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Abstract

Broad Absorption Line Quasars (BAL QSOs) are those that present strong absorption
features in their spectra, which are associated to high-velocity outflows that go beyond 100
pc away from the central source, and can reach speed of 1.0c. Thus, AGN feedback in these
objects is particularly strong, as they are an ideal laboratory for studies on the e�ect of
outflows on the host galaxy and its evolution. The Legacy Survey of Space and Time is
expected to significantly increase the number of known BAL QSOs, allowing for novel, larger
scale and ground-breaking AGN feedback studies. However, BAL QSO variability is not
distinct from other QSOs. Therefore, their identification through light-curves is a challenge.

This thesis investigates the multi-wavelength properties and variability of BAL QSOs
and explores the potential of multimodal machine learning for their identification in large-
scale time-domain surveys such as LSST. We characterize a clean sample of 1419 BAL QSOs,
derived from the SDSS DR7 QSO catalogue, and compare their properties to 41086 non-BAL
QSOs. Our investigation includes the construction of mean Spectral Energy Distributions
(SEDs), composite spectra, and light curve analysis. We use these to compare the BAL and
non-BAL QSOs in our sample. We also compare those BAL QSOs which CIV absorption
troughs land fully within the g-band of SDSS with the rest of the BAL QSOs, with the
aim of testing whether the position of strong absorption features has a direct e�ect on the
photometry of the object, and thus its SED and light-curves.

We recover the redder UV-to-optical continuum and steeper IR slope in BAL QSOs,
associated with high dust extinction. Our results are consistent with previous works in the
literature. Our composite spectra reveal the distinct characteristics of Hi-BALs, Lo-BALs,
and FeLo-BALs. They also reveal that the shape, depth or blue-shift of CIV absorption does
not necessarily correlate with the Balnicity index, which is used to define BAL QSO samples.
We propose that studies dedicated to the details of the CIV absorption could potentially
shed light on the details of the outflowing material in BAL QSOs, which can in turn provide
insights on their relationship to the host galaxy and its evolution. Furthermore, we analyze
the Zwicky Transient Facility (ZTF) light-curves by computing their time-domain features,
and find no significant variability di�erences between BAL and non-BAL QSOs. We also find
no significan di�erences in the SEDs nor variability between the BALs with CIV fully inside
and outside the g-band of SDSS.

Moreover, to address the challenge of identifying BAL QSOs via variability, we develop
multimodal machine learning models combining spectral and time-domain data. Our best-
performing model, a dense neural network with multiplicative and attentive fusion, correctly
identifies 74% of BAL QSOs in the test set, a significant improvement compared to 14%
obtained by light-curve classification alone.

We note that the standard deviation of the lower subset defined by the Otsu threshold-
ing algorithm was the feature found to have one of the most significant di�erences when
statistically comparing light-curve feature distributions, and was also the most important
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one for the classification done by the best performing tabular model, an extreme gradient
descent tree ensembling. We propose further studies looking into this algorithm specifically
to determine whether the result seen here is just a coincidence or bias, of if it can assist in
BAL QSO classification through variability.

We emphasize the potential of multimodal learning approaches in astrophysics, and pro-
pose new ideas for potential implementations for the LSST, particularly in characterizing and
identifying BAL QSOs for enabling future ground-breaking studies on their AGN feedback
and galaxy evolution.
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Chapter 1

Introduction

1.1. Active Galactic Nuclei
1.1.1. What is an AGN?

Galaxies whose central supermassive black hole (SMBH) (with a mass of MBH ≥ 106 ≠
1011

M§) is accreting matter are denominated as “active”, and active galactic nuclei (AGN)
are defined as their central region. They are among the brightest sources in the Universe.

After the first unusual spectra observed by Fath [1909] and a couple serendipitous obser-
vations [Shields, 1999], there were no larger studies until the one by Seyfert [1943], were what
are now known as Seyfert galaxies are described as nearby galaxies with unexpectedly broad
lines found in their central region. Later, the 3C catalog [Edge et al., 1959] provided a larger
sample of powerful radio sources that were later cross-matched with their optical conterparts,
which appeared to be “point-like” or “quasi-stellar”. These were called quasars (QSO), his-
torically used to define higher luminosity AGN. The large redshift found by Schmidt [1963]
for the 3C 273 QSO implied it is an extragalactic source, and thus that it is ≥ 1012 times more
luminous than the Sun. At the same time, variability showed that the emitting region was
about ≥ 1 ≠ 10 pc across. Stellar activity is not su�cient to explain such observations, and
the theory for an accreting SMBH was developed by Salpeter [1964], and was later confirmed
with X-ray observations [e.g. Elvis et al., 1978].

1.1.2. The Unification Model
The current picture for AGN consists of a unified model [de Lima Santos & Soltau, 2024,

Netzer, 2015, Ramos Almeida & Ricci, 2017, Spinoglio & Fernández-Ontiveros, 2019] where
the viewing angle explains the wide variety of observations seen in di�erent kinds of AGN
[Antonucci, 1993, Antonucci & Miller, 1985, Urry & Padovani, 1995]. This model is composed
of a SMBH, an accretion disk, a corona, a dusty torus, a broad and narrow line region (BLR
and NLR respectively), and a relativistic jet. Figure 1.1 shows an illustration of the unified
model. This framework divides AGN into two broad categories: unobscured (type-I or Broad
Line) and obscured (type-II or Narrow Line). The di�erence between them is the orientation
angle with respect to the line of sight [Antonucci, 1993, Antonucci & Miller, 1985]: the former
are seen at an angle with respect to the disk allowing the BLR to be observable, whilst the
latter are seen edge-on, where the dusty torus covers these lines.
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Figure 1.1: Illustration of the unified model of AGN by Alexander [Date of
access: 2024].

1.1.3. Multi-Wavelength Emission from AGN
AGN can be detected accross the whole electromagnetic spectrum [Temple et al., 2021].

Their spectral energy distribution (SED) is a combination of many di�erent physical processes
and cannot be described as a single black-body (see Figure 1.2). In the ultra-violet (UV) to
optical range, thermal emission from the accretion disk is observable and can be generally
described as a broken power-law L⁄ Ã ⁄

≠— or L‹ Ã ‹
≠– where — and – are the wavelength

and frequency spectral indices respectively. In the near-infrared (NIR), emission from the
hot dust in the torus dominates. Then, at higher energies, non-thermal emission from the
corona dominates in the X-ray range. The BLR and NLR mostly emit between the UV and
NIR ranges. The spectrum of an AGN has interesting elements at all wavelength ranges.
It includes broad (Full Width Half Maximum FWHM Ø 2000 km s≠1) and narrow emission
lines, as well as both permitted and forbidden ones.

SED fitting has been crucial to AGN studies, as it can consicely provide insight into the
underlying mechanisms of AGN activity as well as their host galaxy characteristics and their
star-forming rates [e.g. Ciesla, L. et al., 2015, Marshall et al., 2022]. It has also played a
key role in quantifying the contribution of the di�erent components of AGN to the overall
observed emission. For instance, Sokol et al. [2023] study the contribution from the torus and
find that it is key to consider a varied enough range of models in order to avoid systematic
biases and missed samples. Mountrichas et al. [2021] look into the X-ray contribution in
SED modelling and find that it can have a significant role when separating the AGN and
host contributions, and when deriving AGN properties. Overall, SED fitting is a key tool in
AGN studies.
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Figure 1.2: Characteristic AGN SED taken from Harrison [2014].

1.1.4. AGN Variability
AGN are variable across all bands [e.g. Hernández-García et al., 2016, Lira et al., 2015,

Son et al., 2023, Ulrich et al., 1997] at time-scales of decades, years and as short as hours.
Variations at shorter wavelengths are more rapid and originate from smaller and inner areas
in the AGN structure. Some of the mechanisms responsible for the variations are instabilities
in the disk, changes in the accretion rate or the distribution of obscuring material, or the
influence of the relativistic jet on its surroundings. Variations have been detected in several
ways such as changes in the continuum or overall brightness, as well as changes in the
spectrum. For instance, Changing-Look AGN [e.g. Ricci & Trakhtenbrot, 2023] are those
which degree of obscuration strongly vary, and/or present intermittent broad emission lines.
Furthermore, di�erent classes of AGN vary in distinct ways: type-I AGN are typically more
variable, with shorter time-scales and larger amplitude; higher luminosity AGN or QSOs
tend to show less extreme variability; and blazars (AGN whose jet is pointing in the line of
sight) usually vary in the shortest time-scale and high amplitudes. Studying the variability
behaviour of AGN is crucial for further understanding of these sources. The Zwicky Transient
Facility (ZTF) [Masci et al., 2018] has played a key role in AGN variability studies. Given its
high-cadence and sky coverage, it has provided an invaluably large dataset of AGN with long
light-curves with many detections. The forthcoming Vera C. Rubin Observatory’s Legacy
Survey of Space and Time (LSST) [Kovacevic et al., 2021, LSST-Science-Collaboration et al.,
2009, Sheng et al., 2022] will scale up the income of nightly data by at least an order of
magnitude by continuous, deep and complete scans of the full sky, with improved cadence
stategies. Studies of AGN variability have a promising future and are expected to improve
with the contribution of the LSST.

1.1.5. AGN Feedback
Furthermore, the evolution of the host galaxies of AGN can potentially be hugely impacted

by its activity, and even their surroundings and the SMBH itself [Fabian, 2012]. AGN are
powerful enough to output radiation, winds, outflows and jets which can interact with the
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inter-stellar medium (ISM) of the host. This could lead to galaxy quenching, which is when
the star formation in the galaxy is haulted. AGN feedback can make the ISM far too hot for
star formation, or even eject it from the host. Here, we overview a few relevant AGN feedback
studies. By estimating the AGN coupling e�ciency (i.e. the fraction AGN radiation that
drives outflows from the host), Zubovas [2018] conclude that, as their title suggests, AGN
are much more e�cient at powering outflows as previously thought, and this could explain
observations. Moreover, studies of AGN-driven outflows in low-redshift samples have revealed
the impact they have on their host galaxies. For instance, Bessiere et al. [2024] found that,
even though the star formation of the host galaxies in their QSO sample with AGN-driven
outflows is not impacted within the studied timescale, they propose that multiple periods of
AGN activity over a larger timescale could lead to the quenching of star formation. Torres-
Papaqui et al. [2024] find evidence that two possible mechanisms of AGN outflow triggering
are radiation and jets, and that the scenario where galaxies with more massive SMBH and
larger bulges tend to exhaust the ISM in the host more rapidly and quench star formation
plausible. Furthermore, Choi et al. [2020] ran cosmological simulations and found that AGN
feedback is e�ective in ejecting metal-rich gas into the surrounding inter-galactic medium
(IGM) of the host. Hopkins et al. [2016] found that AGN feedback can regulate the growth
of the SMBH and can e�ectively mobilise obscuring material to a torus-like shape, consistent
with observations. Overall, AGN feedback has a crucial impact on the host and studying it
is a key part of galaxy evolution studies.

1.2. Broad Absorption Line Quasars
1.2.1. What is a BAL-QSO?

Broad Absorption Line Quasars (BAL QSOs) are those that present significant blueshifted
absorption troughs in their spectra [Bischetti et al., 2023, Gibson et al., 2009, Hall et al.,
2002, Lynds, 1967, Weymann et al., 1991]. BAL features are Ø 2000 km s≠1 wide, have
velocities up to 0.1c, or even 0.2c in some cases [e.g. Bruni et al., 2012, Rodríguez Hidalgo &
Rankine, 2022]. These are associated with high-velocity outflows.

BAL QSOs are usually 10-20% of optically selected QSO populations [Gibson et al., 2009,
Guo & Martini, 2019]. However, the fraction of BALs can increase up to Ø 40% depending on
the selection criteria of the sample. For instance, Maddox & Hewett [2008] find a larger BAL
QSO fraction of ≥ 30% when selecting a sample based on IR colours. In addition, they have
been found to be more prevalent at higher redshifts [Bischetti et al., 2022]. Furthermore, in
spite of being a radio-quiet population in optically selected samples, BALs tend to appear
at a higher fraction in radio-selected QSO samples [Bruni et al., 2019, de Kool, 1993, Menou
et al., 2001, Petley et al., 2022]. They also tend to appear at a larger rate in high-luminosity
samples [Bruni et al., 2019]. Indeed, Torres-Papaqui et al. [2024] found that wind velocity
increases with luminosity.

Some studies have found indications that BAL QSOs are due to an orientation e�ect, whilst
others postulate that they are rather a short evolutionary stage of intensified outflows in the
early life of QSOs. In the first scenario, if the collimated outflow is along the line of sight, then
the absorption features will be visible. Elvis [2000] proposes a unified structure for QSOs,
and gives special attention to also explaining BAL features. He proposes that both BALs and
narrow absorption lines (NALs) originate from the same outflow seen at di�erent angles: the
former appear when it is seen along the direction of the moving material, and the latter when
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it is seen across the outflow. Supporting the same scenario, Lewis et al. [2003] find a trend
of increasing flux with redshift in a small sample of seven BAL QSOs. They claim that since
this trend is just as the ones seen in non-BAL QSO samples, the evolutionary scenario is not
appropiate to explain this behaviour. In more recent years, Naddaf et al. [2023] assume the
orientation-angle scenario and use a theoretical model with a radiation pressure mechanism
for the acceleration of the dusty outflow to predict the probability of observing BAL features.
They found that BAL e�ects increase with accretion rate and that BAL QSOs are slightly
more massive than non-BAL QSOs (> 108

M§), which is consistent with observational data
from the Sloan Digital Sky Survey (SDSS), and thus supports the first scenario. Rankine
et al. [2020] also support this scenario. They found the re-constructed CIV emission in BAL
QSOs to be similar to that in non-BAL QSOs. On the other hand, Canalizo & Stockton
[2002] support the idea of an evolutionary stage. In particular, they find that all four low-
ionization BAL QSOs (Lo-BALs; see below) studied have a recently reactivated AGN and
outflow activity triggered by mergers, and thus postulate that the BAL features are seen in
an early-life evolutionary stage of QSOs. Furthermore, by analyzing the morphology of five
BAL QSOs with very long baseline interferometry (VLBI) imaging, Montenegro-Montes et al.
[2009] find a far too diverse geometry within the sample and indicate that this is di�cult to
explain with the orientation-angle approach. However, other studies have found that instead,
a combination of both scenarios is required to fully explain the BAL phenomena [e.g. Nair
& Vivek, 2022]. For instance, DiPompeo et al. [2013] found a significant IR dust excess in
BAL QSOs and postulate that this can be explained by evolutionary models with a stage
with a high-covering fraction, but note that the orientation angle most likely still plays an
important role in the observed di�erence. Bruni et al. [2012] even considere a third possible
scenario, where BAL features originate from polar jets accelerated by radiation pressure.
They find that BAL and non-BAL QSOs are more of less the same age, ruling out the
evolutionary scenario, and at the same time, that the spectra of the studied sample has
a large range of spectral index, indicating a variety of orientation angles and thus ruling
out the first scenario as well. Nowadays, this has not been finally resolved yet, though the
orientation-angle scenario is generally more accepted.

BAL QSOs have been found to be more strongly reddened in the UV range than non-
BAL QSOs, and more X-ray weak [Gallagher et al., 2007, Gibson et al., 2009, Saccheo et al.,
2023]. Green et al. [2001] find that the modeled X-ray emission of BAL QSOs without the
absorption e�ects due to the outflow are not intrinsically di�erent from that in non-BAL
QSOs, which reveals that the X-ray weakness is due to the absorbers.

1.2.2. BAL-QSO Spectroscopy
BAL QSO spectroscopy is the key aspect in this population. Several works have focused

on modelling BAL QSO spectra by masking the absorption troughs and reconstructing the
unabsorbed emission. Brodzeller & Dawson [2022] do this with a Principal Component
Analysis (PCA) representation of the spectra to model a broad variety of QSO spectra
in SDSS, and Rankine et al. [2020] are able to recover the unabsorbed UV emission and
reconstruct the details of the spectra. They also build composite spectra to find general
trends in the absorption and emission characteristics of the BAL QSOs. Maddox & Hewett
[2008] also study the composite spectra divided by IR colours, and Mas-Ribas & Mauland
[2019] find signatures of radiation pressure as the main mechanism for outflow acceleration
in their composites.

The BAL QSOs are divided into three categories according to the ionization level of their
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absorption lines [Gibson et al., 2009, Naddaf et al., 2023, Trump et al., 2006]:

1. Hi-BALs: These QSOs present BALs in a high-ionization state. Unambiguous identifi-
cation includes verification that there are no BALs in the AlIII and MgII regions.

2. Lo-BALs: These present BALs in a low-ionization state, specifically in the MgII and
AlIII regions. They might also be present in the SiIV and CIV regions. About 1.3% of
QSOs are part of this class.

3. FeLoBALs: About 0.3% of QSOs present absorption from FeII as well as Lo-BAL fea-
tures. These BALs could even be have specific evolutionary stage. Leighly et al. [2024]
found two groups of FeLoBALs, associated with high and low accretion rates, and pro-
pose that these classes are part of an evolutionary sequence where the torus in FeLoBALs
with low accretion rates cannot sustain optically thick winds.

4. MiniBALs: These QSOs present troughts that are associated to blended narrow-line
absorption rather than BALs. So, these are not true BAL QSOs and contaminate BAL
samples Hamann et al. [2013].

A rigorous definition for BALs was introduced by Weymann et al. [1991]. A QSO will be
labeled as a BAL QSO if its Balnicity Index (BI) is positive:

BI ©
⁄

25000

3000

A

1 ≠ f(V )
0.9

B

CdV, (1.1)

where f(V ) is the continuum-normalized spectral flux as function of rest-frame velocity V in
km s≠1. The constant C is set to one if f(V ) < 0.9, i.e. the expression in brackets is positive,
for an interval of 2000 km s≠1 or more.

Later, Hall et al. [2002] proposed the Absorption Index (AI) as a less restrictive measure
capable of gaging the strength of all absorption features, not just broad ones:

AI ©
⁄

25000

0

A

1 ≠ f(V )
0.9

B

CdV (1.2)

Here, C = 1 for when f(V ) < 0.9 for an interval of al least 450 km s≠1.

1.2.3. BAL-QSO Variability
Furthermore, BAL QSOs are thought not to have a characteristic variability behaviour

that can easily distinguish them from other QSOs. Type-2 AGN in general are less variable
due to their obscuration [De Cicco et al., 2022], and it is possible that the outflows obscuring
the central source play a similar role. Sánchez-Sáez et al. [2018] found that the structure
function of BAL QSO variability is not distinct from other AGN. However, BAL features
themselves have been found to be strongly variable. In particular, several studies have
focused on the variability of CIV absorption troughs and have found that it can present
drastic varitability in timescales as short as tens of hours and as long as years [De Cicco
et al., 2017, Erakuman & Filiz Ak, 2017, Gibson et al., 2008, Green et al., 2023, Robinson
et al., 2024]. This variability can indicate changes in the distribution and dynamics of the
absorbing material. Capellupo et al. [2013, 2011, 2012] conduct an integral study of the CIV
trough variability of 24 closely monitored BAL QSOs across short and long timescales (0.02
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to 8.7 years in the rest-frame). They found that variability is more likely to be observed at
longer timescales, suggesting that the changes in the outflowing material that give origin to
the variability do not occur in the immediate surroundings of the central source (see also
Welling et al. [2014]). They also find that stronger variability tends to be observed in weaker
BAL features (see also Lundgren et al. [2007]). Additionally, Ruan et al. [2016] find that
their QSO sample selected via variability has a larger fraction of BAL QSOs than samples
selected and hypothesise that the variability in their spectra can subsequently have an e�ect
on photometry and thus light-curves. So far, methods for the identification of BAL QSO
samples using variability only remain to be developed.

1.2.4. AGN Feedback in BAL-QSOs
Moreover, the same outflowing material in BAL QSOs that originates variability can power

AGN feedback processes, which tend to be particularly strong (e.g. kinetic luminosities larger
than 10≠3 times the bolometric luminosity of the QSO) [McGraw et al., 2017, Miller et al.,
2020]. Several studies of individual BAL QSOs [e.g. Arav et al., 2013, Chamberlain et al.,
2015] as well as larger works have found that these outflows lie more than 100 pc away from
the central source (i.e. beyond the NLR and dusty torus), which is in agreement with BAL
variability studies. The AGN feedback found in BAL QSOs could have a key role in the
evolution of galaxies and their central SMBH across cosmic time. By studying BAL features
in QSOs until redshift z ≥ 6, Bischetti et al. [2023] find that in the early Universe (1 Gyr
old) feedback from BAL QSO outflows is already ocurring, and additionally, that at larger
redshifts BAL QSOs tend to be more prevalent and have stronger outflows. Bischetti et al.
[2022] study this e�ect in high-luminosity QSOs. Within the evolutionary scenario of BAL
QSOs, they propose that the BAL phase slows down SMBH and host growth, explaining
the tendency for more massive galaxies at larger redshifts. Indeed, BAL QSOs are the ideal
laboratory for AGN feedback studies.

1.3. Machine Learning in Astrophysics
As early as the nineties [Odewahn, 1998], astronomers have been interested in the potential

that Machine Learning (ML) has to o�er for the automization of time-consuming tasks,
and since then, the interest and applications have grown up to 10,000 published astronomy
papers that mention ML in their abstract [Borne, 2009, Djorgovski et al., 2022, Saraswat
& Jain, 2021, Smith & Geach, 2023, Webb & Goode, 2023]. It is currently a vast field
with many key works with useful models implemented. ML in general can be divided into
supervised (when the data is accompanied by the correct output) and unsupervised (when
it is not). Supervised ML is useful for tasks such as classification (to identify to which
category data instances belong to), regression (to predict a value) or object detection, whilst
unsupervised ML can assist in anomaly detection (identifying unusual or unexpected objects),
dimensionality reduction (reducing the number of variables under consideration) or clustering
(grouping similar data points together).

ML has been particularly useful in assisting AGN variability studies and enabling discover-
ies otherwise not plausible. In particular, ZTF and LSST brokers have implemented systems
that allow for almost real-time monitoring of the varying sky [Förster et al., 2021, Möller
et al., 2020, Matheson et al., 2021, Nordin, J. et al., 2019]. ZTF and the future LSST output
alerts every night when variability of any kind is detected through these brokers, which can
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enable quick follow-up observations such as obtaining spectroscopic data in early stages of
supernova transients [Pruzhinskaya et al., 2023]. Sánchez-Sáez et al. [2021b] presents the
light-curve classifies used by the ALeRCE broker1. SaviÊ et al. [2023] also implement clas-
sifications for AGN light-curves. These, among other studies, have found that representing
light-curves with time-domain features provides the best possible classification performance.
De Cicco et al. [2021] estimate there to be 6.2◊106 AGN in the LSST, proving how relevant it
is that there are su�ciently e�cient models in place to process the sheer volumes of expected
data.

Moreover, Sánchez-Sáez et al. [2021a] and Baron & Poznanski [2017] have implemented
anomaly detection algorithms capable of finding changing-look AGN via variability, and
unusual galaxy spectra. Spectroscopic dimensionality reduction, classification and redshift
estimation has been the focus of many relevant works such as Portillo et al. [2020], Iwasaki
et al. [2023] and Szakacs et al. [2023]. Unsupervised methods, such as clustering of spectra
[Teimoorinia et al., 2022] or building complete AGN samples [Hviding et al., 2024], just to
name a few, have also been implemented and have prooved useful.

Models applied specifically to BAL QSOs have been developed as well, mostly focusing on
spectral processing. Kao et al. [2024] test which dimensionality reduction techniques can be
the most useful at providing useful spectral representations for classification. For BAL QSO
identification in larger QSO samples, Nair & Vivek [2022], Guo & Martini [2019] and Busca
& Balland [2018] build di�erent convolutional neural networks (CNNs), Reichard et al. [2003]
use tree ensemble models instead, and Tammour et al. [2016] use an unsupervised algorithm
to cluster SDSS spectra. All these approaches have proved useful and are e�ective at assisting
discoveries and insights into the open questions regarding BAL QSOs.

1.3.1. Multimodal Learning
Furthermore, in the past years, there has been a significant increase of multimodal machine

learning (MML) models in the ML field [Akkus et al., 2022, Baltruöaitis et al., 2017, Liang
et al., 2023, Ngiam et al., 2001, Parcalabescu et al., 2021, Sleeman IV et al., 2021]. To
understand these models, the concept of “modality” should be defined first: a modality
refers to the way in which something exists or is done. Then, a multimodal model can
process and relate information from heterogeneous and interconnected modalities.

When building a MML model, one of the most important choices to make is how to fuse or
ensemble the modalities [Liu et al., 2018, Sleeman IV et al., 2021, Zhao et al., 2024]. Di�erent
fusion techniques have diverse advantages and disadvantages, and should be chosen to best
accommodate the specific data types and ML task. Additive fusion can be devided into
early, intermediate and late fusion. Early fusion consists of creating a joint representation
of the modalities, which can potentially be meaningful, and training a single model on it.
However, it is tends to require extensive pre-processing of the individual modalities, such
as specialized feature extraction, in order to combine them in a consistent way, and runs
under the assumption that the model trained on the joint representation of the data is well
suited for all modalitites. In late fusion, a separate model is trained on each data modality,
and are fused at the decision level by, for instance, averaging or voting over the predictions
of each model. This allows for each model to be specialized on the given data modality.
However, it struggles to learn deeper correlations between the modalities. Overall, additive
fusion techniques have the key disadvantage of having the implicit assumption that all the

1 See also https://alerce.online/
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modalities are equally reliable. Multiplicative and attentive fusion can be an alternative.
The former consists of combining the modalities through multiplications like tensor products
rather than in an additive way [Mittal et al., 2019]. It is good at capturing more complex
interactions between the modalities. However, it can be more computationally expensive than
other methods. Attentive fusion refers to the application of attention mechanisms [Vaswani
et al., 2023] to give more relevance to a certain modality by assigning weights to, for instance,
the decision probabilities. Even though it might require significant tuning, this technique is
particularly useful when not all modalities are equally reliable.

So far, applications of this approach have mostly been in the industry, in domains such as:
medicine, for the combination of medical images, patient records and other data; autonomous
vehicles, for the combination of data from cameras, LiDARs, radars and other inputs; stock
price prediction, for the combination of price time-series, tabular data, graphs and text
from news articles and such; emotion recognition, for the combination of tone of voice, facial
expressions and body language; and robotics, to allow robots to interact with multiple aspects
of their environment.

This approach has made its way to the field of astrophysics, doubling the amount of papers
with the keyword “multimodal” in the title and/or abstract in 20 years. Results are promising,
showing the potential MML has for advancing the applications of ML to astronomical data.
Cuoco et al. [2021] propose a MML model for multi-messenger astronomy, where data from
joint “-ray bursts and gravitational waves are combined in order to characterize astrophysical
events. They apply this approach to combine not only two modalities (images and time-
series), but also data from di�erent instruments. Liu et al. [2023] the late multimodal fusion
technique to combine a series of CNNs, each trained with a specific type of pulsar diagnostic
image. For the estimation of photometric redshifts of QSOs, Hong et al. [2023] design a
model with two main components: the first is capable of generating spectral features from
photometric data; and the second applies multimodal transfer learning (i.e. the use of the
knowledge gained from one task for improving performance of a second related task) by using
the generated spectral features to increase the accuracy of photometric redshift prediction.
Alegre et al. [2024] combine images and tabular data in order to build a MML model that
can e�ectively distinguish single-component from multi-component radio sources in LOFAR
data and obtain high accuracies. Parker et al. [2024] build an ensemble of two self-supervised
transformers especialized on galaxy spectra and galaxy images each, with which a latent space
of meaningful representations is created. The image and spectrum of a galaxy to be close
in the latent space, which results in high performance for the tasks of galaxy morphology
classification, photometric redshift estimation and galaxy property prediction.

Furthermore, even some multimodal Large Language Models (LLMs) specialized in as-
trophysics have been built. Mishra-Sharma et al. [2024] build PAPERCLIP, a model which
connects astronomical images with natural language abstracts from successful observing pro-
posals, by associating elements in the images to keywords in the abstracts.

These innovative models show promising results from applying a multimodal approach to
astronomical data. MML models will most likely continue to be built for astropysics and
assist advances in the field.

1.4. This Work
With forthcoming big data surveys in mind, such as the LSST [LSST-Science-Collaboration

et al., 2009], which will provide up to 15 TB of data every night, it is crucial to develop ef-
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ficient data science algorithms that are able to identify sources of interest [Djorgovski et al.,
2022]. In this work, our aims are as follows:

1. Describe the multi-wavelength, spectroscopic and variability properties of a clean BAL
QSO sample.

2. Test the usefulness of multimodal learning for the task of identifying BAL QSOs in large
time-domain surveys such as the LSST.

To this end, we characterize a clean BAL QSO sample by constructing its mean SED and
composite spectrum, and analyzing its variability. Additionally, given the relevance of the
CIV absorption features in the characterization of BAL QSOs, we also aim to investigate its
e�ect on the mentioned properties. Additionally, we use the clean sample to build and test
spectrum-assisted light-curve classifiers with a multimodal learning approach.

In Chapter 2, the studied sample is presented and analyzed. In Chapter 3, we describe
the ML experiments done. Finally, we present a summary of our results and future prospects
in Chapter 4.

Throughout this work, we assume a flat �CDM cosmology with parameters H0 = 70 km
s≠1 Mpc≠1, �� = 0.70 and �M = 0.30.

For the implementation of data science and machine learning methods [e.g. Géron, 2019,
IveziÊ et al., 2014], the scikit-learn [Buitinck et al., 2013, Pedregosa et al., 2011], keras

[Chollet et al., 2015] and tensorflow [Abadi et al., 2015] libraries were used.
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Chapter 2

Properties of the Reference Sample

2.1. Presentation of the Sample
The studied sample consists of 1419 BAL QSOs and 41086 non-BAL QSOs selected by

Naddaf et al. [2023] from the SDSS DR7 QSO catalogue [Shen et al., 2011]. Our BAL QSOs
are classified according to their ionization level: there are 1082 Hi-BALs, 276 Lo-BALs and
61 FeLoBALs. In addition, 95 non-BAL QSOs are labeled as Mini-BALs, which have a null
BI and far too low outflow velocities for a BAL, but present smooth absorption features
like other BALs due to blended narrow absorption lines, and thus could contaminate BAL
samples [Hamann et al., 2013]. Since the spectra of the sources in our sample were visually
inspected, it is as clean as possible. Figure 2.1 illustrates the proportion of BAL classes and
sub-classes present in the studies sample and Figure 2.2 shows the distribution of our sources
in the sky.

(a) (b)

Figure 2.1: Pie charts illustrating breakdown of sub-classes in our sample.
In panel (a), there is the proportion of BALs to non-BALs in our sample,
and in panel (b) the proportion of Hi-BALs to Lo-BALs and FeLoBALs.

The sources were selected with the following criteria: a median signal-to-noise ratio S/N >

10 per pixel in the rest-frame ⁄2700 ≠ 2900 Å MgII region, and a measured black hole mass
estimate from MgII ⁄2800 Å.
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Figure 2.2: Sky map of the sample.

(a) (b)

Figure 2.3: Redshift z distribution by class in panel (a) and by BAL ioniza-
tion class in panel (b). The vertical dotted and dash-dotted lines indicate
the median values, and the solid black line marks the cuto� for the fully-in-g
sample.

As can be seen in Figure 2.3, the vast majority of BAL QSOs lie beyond redshift z = 1.5,
since reliable identification of Hi-BALs require the presence of the AlIII region in the spectra.
The observed optical spectrum from SDSS does not cover this rest-frame wavelength region
at z < 1.5, and so Hi-BALs are missed. In this redshift range, there are mostly Lo-BALs [see
Appendix B in Naddaf et al., 2023].

14



(a) (b)

(c) (d)

Figure 2.4: Distribution of the physical properties of our sample by class.
The distribution of black hole mass estimated from Mg II is shown in panel
(a), monochromatic luminosity at 3000 Åin panel (b), bolometric luminosity
in panel (c), and Eddington ratio –Edd in panel (d). The vertical lines
indicate the median values.

Figure 2.4 shows that BAL QSOs have a systematically higher BH mass estimate, bolo-
metric and monochromatic luminosity. Indeed, Naddaf et al. [2023], Sniegowska et al. [2023]
found that BAL e�ects are significantly more prevalent in QSOs with MBH > 108

M§, which
is consistent with the BH masses seen in our sample. Furthermore, Bruni et al. [2019] found
a higher incidence of BALs in the WISSH sample (WISE/SDSS selected hyper-luminous
(WISSH) QSOs; see Bischetti et al. [2016]). They also a fraction of Lo-BALs of around 26%,
20 times higher than the fraction found in other samples (1.3%). This is most likely explained
by radiation pressure being favored in hyper-luminous QSOs, which accelerates the outflows
[Gaskell et al., 2016, Giustini & Proga, 2019]. Finally, no significant di�erence is seen in the
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Eddington ratio of BALs and non-BALs (see Figure 2.4.d) either.
In order to investigate the e�ect of the CIV absorption on the SEDs, composite spectra

and variability of BAL QSOs, we have defined a sub-sample such that the troughs blueward
from the CIV ⁄1548.9Å line land fully within the g-band of SDSS. This results in a redshift
cuto� of 1.95 Æ z, marked with a black vertical line in Figure 2.3. This subsample has 193
BALs and 1167 non-BALs, and will be called the “fully-in-g” BAL sample throughout this
chapter. The rest of the BAL QSOs (i.e. those which CIV absorption troughs land outside
of the g band), will be called the “not-in-g” BAL sample.

2.2. Spectral Energy Distributions
Here, we aim to search for any peculiar di�erence between the SED of the BAL QSOs

and the non-BAL QSOs in our sample. We do this by constructing the mean SED of these
sub-samples.

2.2.1. Multi-Wavelength Data
By construction, all sources in our sample have ugriz magnitudes available in SDSS. We

gathered mid-IR photometry measurements from the Wide-field Infrared Survey Explorer
(WISE; Wright et al. [2010]) in the bands at ⁄ = 3.4, 4.6, 12 and 22µm. All four bands were
available for 98.94% of BALs (1404 objects), and for 98.88% of non-BALs (40624 objects) in
our sample. We also recovered measured magnitudes in the near-IR from the Two-Micron
All Sky Survey (2MASS; Skrutskie et al. [2006]) and the UKIRT Infrared Deep Sky Sur-
vey (UKIDSS; Lawrence et al. [2007]), through cross-matching with the catalogs built by
Krawczyk et al. [2013] and Lyke et al. [2020]. When measurements from both surveys are
present, UKIDDS is preferred since it is deeper than 2MASS (e.g. in the K band, 2MASS
has a limit of 15.50 magnitudes, and for the UKIDDS Deep Extragalactic Survey this value
is 20.8). Finally, 51.02% of BALs in our sample (724 objects) have available J, H and K

band magnitudes from either 2MASS or UKIDDS, and 25.86% (367 objects) have a Y band
magnitude available from UKIDDS. In sum, 295 BALs and 7777 non-BALs have available
magnitudes in all 13 bands.

2.2.2. Methods
To build our SED, we follow the same procedure as Saccheo et al. [2023] and Krawczyk

et al. [2013], using the code written by the former available on GitHub2.

2.2.2.1. Corrections

The first step is to account and correct for e�ects that are external to the emission from the
QSO and may modify the result. In particular, we address the absorption by the intergalactic
medium (IGM), the contributions of emission lines from the BLR and NLR, and from the
host galaxy.

Lyman – Absorbers in the Intergalactic Medium
Neutral hydrogen clouds in the IGM along the line of sight cause significant absorption

toward shorter wavelengths than the Ly– 1216 Å line [Lynds, 1971]. With a given optical

2 https://github.com/ivanosaccheo/my_functions
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Figure 2.5: Redshift z distribution for the QSOs used for building our mean
SEDs.

depth ·(z, ⁄), the magnitude o�set can be derived by convolving it with the transmission
curve from each filter S⁄ and the continuum flux F⁄ as follows:

�mIGM = ≠2.5 log
s

⁄F⁄e
≠·(z,⁄)S⁄d⁄

s
⁄F⁄S⁄d⁄

(2.1)

To this end, the IGM model by Inoue et al. [2014] was used to obtain an estimate of the
optical depth · . They describe the absorption to be due to two separate components: the
Ly– forest, which dominates at column densities of log (NHI/cm≠2) < 17.2, and the damped
Ly– systems, dominating at log (NHI/cm≠2) Ø 20.3. To correct only for the minimum needed,
and also because we cannot tell whether they are present in our photometry, we assume there
is no contribution from the damped Ly– component. Furthermore, to model the continuum
in the UV-to-optical, a single power-law of F⁄ Ã ⁄

≠1.56 is used [Vanden Berk et al., 2001].
This calculation is done for all five of the SDSS filters.

Emission Lines
The presence of strong emission lines can overestimate the measured apparent magnitude

if, at a certain redshift, they fall onto a given filter. In order to correct for this e�ect, we use
a mock continuum flux F⁄(c), and add the contribution of the 13 strongest lines as measured
by Vanden Berk et al. [2001]. Then, the magnitude o�set can be calculated as:

�mEL = ≠2.5 log
s

⁄F⁄(c&l)S⁄d⁄
s

⁄F⁄(c)S⁄d⁄
, (2.2)

where S⁄ is the transmission curve of a given filter. The continuum flux F⁄(c) is modeled
with a single power-law as mentioned above. The emission lines are described as a Gaussian
profile with equivalent widths and FWHM obtained from Vanden Berk et al. [2001]. Note
that this correction does not account for the skewness of the line profiles nor the dependence
on equivalent width. We applied it to all 13 bands in our data.
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Host Galaxy
Finally, the contribution from the host galaxy must be subtracted from the total luminosity

Ltot = LAGN + Lhost. For QSOs with log L5100 < 44.75, the relation found by Richards et al.
[2006] can be used (see also Berk et al. [2006]):

log L6165,host = 0.87 log L6165,AGN + 2.887 ≠ log Lbol

LEdd

, (2.3)

where Lbol/LEdd is taken to be equal to 1 since it accounts for the minimum correction
required. For QSOs with log L5100 < 45.053, the relation for high-luminosity QSOs found by
Shen et al. [2011] should be used instead:

log L5100,host

log L5100,AGN

= 0.8052 ≠ 1.5502x + 0.9121x
2 ≠ 0.1577x

3
, (2.4)

where x + 44 © log L5100,tot/[erg s≠1].
The monochromatic luminosity at 5100Å was recovered from the data by interpolating

between the two closest bands available.

2.2.2.2. Obtaining the Mean SED

After applying the corrections, the data is interpolated over a grid of wavelengths with
�(log ⁄) = 0.02 from 912 Å and 15.8 µm to obtain a homogeneously binned SED at luminosi-
ties Li. The uncertainties are derived by interpolating the upper bounds of the luminosity
values, i.e. Li + ‡i, over the wavelength grid, and then subtracting the main luminosities.

Then, the mean SED is computed at each wavelength bin with the weighted geometric
mean:

⁄L = exp
Aq

N

i
log(⁄Li)wi

q
N

i
wi

B

, (2.5)

where wi © (⁄Li/‡i)2 are the weights and N is the number of data points. The uncertainties
in the SED are given by the geometric variance:

‡
2 =

q
N

i
log

1
⁄Li

⁄L

2
2

N ≠ 1 (2.6)

2.2.2.3. Treatment of Errors

We found that WISE uncertainties reported by Lyke et al. [2020] are far too low to be
reliable. Reaching errors as low as 6 ◊ 10≠4 magnitudes and 0.005 % of uncertainty for the
W1 band, these values are well below the WISE systematic uncertainty of ±1.5 % [Wright
et al., 2010], which causes problems in our SED fitting. We resolve this by restricting the
distribution of errors ‡i such that values below 0.05 magnitudes are scaled up to

Ô
‡i

2 + 0.052

to combine the reported errors with an additional systematic uncertainty of 0.05 magnitudes.

2.2.3. Results
In Figure 2.6, we show our mean SED derived for all BALs. The objects with redshifts

below 1.5 (see Figure 2.5) are systematically dimmer, which is expected.
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Figure 2.6: Mean SED for our BAL sample. The vertical dotted and dashed
lines mark the Ly– limit at 912 Å and the CIV line at 1548.9 Å respectively.
The shaded area corresponds to the 68% confidence interval.

2.2.3.1. SED for BAL QSOs vs. non-BAL QSOs

In order to compare our mean SED with the one derived from non-BALs and templates
in the literature, we normalize at log 4.5Å. In other words, we assume equal monochromatic
luminosity at this wavelength allowing for relative comparison between the SEDs. Figure 2.7
displays our mean BAL SED compared with the one for non-BALs, as well as the template
for a general QSO population by Krawczyk et al. [2013] and for high-luminosity BAL QSOs
derived by Saccheo et al. [2023].

Here, we recover the redder UV-optical continuum between 1000Å and 1 µm, a behavior
consistently found in the literature [e.g. Gallagher et al., 2007, Krawczyk et al., 2015, Reichard
et al., 2003, Saccheo et al., 2023, Trump et al., 2006]. This is explained by higher dust
extinction associated to the outflows in BAL QSOs.

At longer wavelengths, in the IR range (⁄ > 1 µm), we find a similar behavior to that
obtained by Saccheo et al. [2023]. The BAL SED is steeper, once again pointing to a large
dust contribution. It has been proposed that the outflowing gas has a dust component. By
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deriving the attenuation curve for BAL dust, Gaskell et al. [2016] conclude that there is
no intrinsic di�erence between the SED of BALs and non-BAL QSOs, and the reddening is
purely due to dust. Additionally, they argue that this extra dust in BAL QSOs is associated
with their high-velocity outflows, since radiation pressure on the dust will drive the outflow if
the gas and dust are coupled. Zhang et al. [2014] also propose that a dust component within
the outflow explains the found correlations between the NIR slope and BAL parameters. The
results seen here are consistent with this explanation.

Moreover, the SED obtained by Saccheo et al. [2023] for high luminosity BAL QSOs shows
a significantly flatter UV continuum than the BAL SED obtained here. This indicates that the
BALs in the WISSH sample could have stronger and/or deeper absorption features. One of
the QSOs in the fully-in-g sample also happens to be in the WISSH sample (WISSH01, SDSS
004527.68+143816.1). Additionally, 18 out of the 38 BAL QSOs used to compute the fully-
in-g BAL SED (see Figure 2.8) have a high bolometric luminosity (log Lbol/[erg s≠1] Ø 47.0).
Therefore, it is not possible to say that the di�erence seen in the UV continuum is due to
a behavior characteristic to high luminosity BAL QSOs only, and it is most likely due to a
selection e�ect.

We also note that the mean SED of non-BALs is similar in shape to that of Krawczyk
et al. [2013], plotted with a dashed-dotted line in the plot. The only notable di�erence is a
steeper decline between ≥ 4000Å and 1 µm and a more pronounced dip at ⁄ ≥ 1.3µm. This
di�erence is most likely due to selection e�ects, such as di�erences in the redshift distributions
of both samples, or the sample size (their template was computed with 119652 QSOs, whilst
our non-BAL SED with 7777 sources).

2.2.3.2. SED for BALs in the Fully-in-g and Not-in-g Samples

Figure 2.8 shows the SED obtained for the BALs in the fully-in-g BAL sample compared
to the ones in the not-in-g sample. Respectively, 38 and 257 BAL QSOs with detections in
all 13 bands were used for the computation of each of these SEDs. Given the narrow redshift
range and low number of objects, their SEDs are very smooth, with nearly straight regions.

When normalizing and assuming equal monochromatic luminosities at log 4.5Å, we see
the obtained SEDs for both sub-samples are generally alike in shape, with the fully-in-g BAL
SED being slightly dimmer. The main di�erence between them is that the fully-in-g BAL
SED has a more pronounced dip at ≥ 1 µm, which can indicate a larger relative di�erence
in temperature between the accretion disk (dominant in the UV and optical) and the dust of
the torus and the outflows (dominant in the NIR). Between the dip and the normalization
point, the fully-in-g BAL SED is minimally steeper, and after it it is brighter. The IR W4
band lands at 6.5⁄ < 10.4 µm for both samples given a median redshift of 2.01 for the fully-
in-g and of 1.68 for the not-in-g samples. Thus, this brighter portion in the fully-in-g SED
could possibly indicate stronger dust extinction which is not necessarily fully explained by
the redshift selection of the sub-samples alone. However, given the limited number of objects
used to compute the fully-in-g BAL SED, it is a possibility that these sources are by chance
at an inclination angle such that the outflow is covering a larger fraction of the QSO. Further
studies are needed to fully explain the origin of this di�erence in IR emission.

2.3. Spectra
The characterization of the BAL QSOs in our sample would not be complete without

studying their spectroscopic properties. In this Section, we describe their spectral parameters,
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Figure 2.7: Mean SED computed for our BAL (in orange) and non-BAL (in
blue) samples compared to the ones computed by Krawczyk et al. [2013] for
a general QSO population (dash-dotted line), and by Saccheo et al. [2023]
for high-luminosity BALs (dotted line). They are normalized to log 4.5Å,
marked by a solid vertical line.

and build composite spectra to ease the analysis.
We fetch SDSS spectra from the 18th Data Release (SDSS DR18; Almeida et al. [2023])

through the SDSS Science Archive Server (SAS)3. They were recovered for all objects except
for 29 non-BALs, one Hi-BAL, and one Lo-BAL. Figure 2.9 displays an example from our
sample spectrum for each of the BAL ionization classes.

Furthermore, Figures 2.10 display the distribution of the C IV emission equivalent width
and FWHM for BALs and non-BALs, and 2.11 the ones of BI and AI for BALs only, as
measured by Lyke et al. [2020]. We note that the CIV parameters are similar between BALs
and non-BAL QSOs, indicating that the key di�erence between them is not CIV emission,
but the troughs blueward of the CIV rest-frame wavelength. Figure 2.11 shows that the AI
and BI distributions are skewed to the left, indicating BALs with more extreme absorption
are less common. Additionally, out of the 7909 non-BAL QSOs with available AI and BI
measurements, 116 have positive BI values, with a minimum of 2.00, a median of 187.69 and
a maximum of 109060.02 km s≠1) . These non-BALs were flagged and excluded from the ML
experiments described in Chapter 3.

2.3.1. Composite Spectra
The composite spectrum of a large sample is an intuitive way of visualizing its character-

istic continuum and absorption. In this section, we build composite spectra to compare BAL

3 https://data.sdss.org/sas/dr18/spectro/sdss/redux
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Figure 2.8: Mean SED computed for our fully-in-g and not-in-g BAL sam-
ples compared to the one computed by Saccheo et al. [2023] for high lu-
minosity BAL QSOs. They are normalized to log 4.5Å, marked by a solid
vertical line.

sub-classes with each other, and to check for changes with BI.

2.3.1.1. Methods

With some minor correction, we use use the code written by Hans Klaufus available on
GitHub 4, a script tailored specifically for building a composite spectrum of a given selection
of SDSS QSO spectra.

After reading all the given spectra, it corrects them for redshift such that they are in
the rest-frame. The code was modified such that it uses the redshift value reported by the
reference paper of our sample [Naddaf et al., 2023] instead of that found within the spectrum
files from the SAS.

Then, it sets the flux value of bad pixels to zero, such that when the spectra are later
combined, these null values will not contribute to the mean flux in the given wavelength bin,
e�ectively excluding them from the resulting composite spectrum. Bad pixels are identified
with the and_mask reported by SDSS5. Note that for composite spectra created for a small
number of objects, this could lead to gaps if the bad pixels are too prevalent.

Next, the spectra are normalized. In increasing order of redshift, pairs of consecutive
individual spectra are taken and the mean flux of each of them is calculated. A normalization
factor equal to the ratio of these mean fluxes is used to normalize this pair of spectra. This
continues until the fluxes and inverse variances of all of the individual spectra have been

4 https://github.com/hklaufus/CompositeSpectrum
5 See https://www.sdss4.org/dr17/spectro/quality/#SpectrumQuality
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(a) Hi-BAL Spectrum: SDSS 100021.72+035116.5, at z = 2.021.

(b) Lo-BAL Spectrum: SDSS 121440.27+142859.1, at z = 1.6245.

(c) FeLo-BAL Spectrum: SDSS 143752.75+042854.5, at z = 1.9188.

Figure 2.9: Examples of individual spectra by BAL ionization class.
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(a) (b)

Figure 2.10: Properties of the CIV line profile as measured by Shen et al.
[2011]. Panel (a) shows the FWHM of the CIV profile [km s≠1] of the
available data for 1271 BAL and 11183 non-BAL QSOs. Panel (b) shows
the restframe equivalent width of the whole CIV profile [0.1 nm] of the
available data for 1307 BAL and 11244 non-BAL QSOs.

normalized relative to each other in this way. This ensures that all spectra are consistently
in the same relative flux range, even if some of them do not overlap with each other over the
rest-frame wavelength.

Finally, it re-bins the spectra to the inputted wavelength range and grid with � (log ⁄) =
1Å. We apply a geometric mean to calculate the flux, uncertainty and noise in each bin, using
all available spectra in the given bin.

2.3.1.2. Results

Figure 2.12 displays the obtained composite spectrum of Hi-BALs, Lo-BALs and FeLoB-
ALs. The characteristic shape of each class is recovered. They all show strong absorption
blueward of the CIV line.

The LoBAL composite is the reddest one, with the flattest continuum, which has been
previously found Gibson et al. [2009], Reichard et al. [2003]. However, in spite of being the
defining feature of this class and being present in Figure 2.9.b, the absorption blueward of
the MgII ⁄2799 line is only slightly noticeable. This is most likely because of the varying
depths, blue-shifts and widths of the absorption that wash out the individual absorption
features when computing the mean.

Moreover, the FeLo-BALs are quite distinct from both Hi-BALs and Lo-BALs. The FeII
line absorption in this ionization class is appreciated at several wavelengths, specially at
1608.45 Å, whilst not being present for the other classes. Additionally, the close-up to the
SiIV and CIV lines in Figure 2.12.b reveals that its CIV emission is more blue-shifted than
for the other sub-classes. However, this could be intrinsic to the present sample here, and
not necessarily to the FeLo-BAL class in general. Its continuum is also steeper, less uniform,
and has excess emission in several regions, such as between the FeII lines at 2382.765 and

24



(a) (b)

Figure 2.11: CIV BI and AI as measured by Lyke et al. [2020] in panels
(a) and (b) respectively. The vertical dashed black lines are at the median
values. These histograms were built with the available data for 993 BAL
QSOs.

2586.650 Å, and between FeII⁄1608.5Å and AlII ⁄1857Å. FeLo-BALs are a rare and special
class of BALs Leighly et al. [2024], Menou et al. [2001], Trump et al. [2006], which can be
appreciated in our composite.

Furthermore, Figure 2.13 displays the obtained composites for our BALs separated by BI
bins corresponding to the 25th percentile, median, 75th percentile and maximum BI values of
our sample. Except for the two composites with highest BI where there is no major di�erence
in the continuum, we see that the higher the BI of the sub-sample, its composite has a flatter
continuum. This is consistent with the idea that BALs with higher BI have stronger outflows,
and thus, a higher dust extinction.

In the lower panel (Figure 2.13.b), we see that the BI does not relate directly to the depth,
width or blue-shift of the absorption troughs. Indeed, the BI is a proxy for any absorption,
not its properties. To fully describe the CIV absorption, one should include the number,
width and blueshift of the troughs. In the interactive plots developed by Rankine et al.
[2020] 6, it is intuitive to see the vast diversity of absorption and emission shapes in both
BAL and non-BAL QSOs. They build a CIV emission space on its EW and blue-shift. A
similar work with a detailed description of the CIV troughs would bring valuable insight
into the detailed structure of the outflows in BAL QSOs, including its shape, density and
strength. This could proof crucial to feedback studies in BALs.

2.4. Light-Curves
In this section, we compute statistical tests to compare the features of BALs and non-

BALs to confirm whether BAL QSOs indeed do not have a distinct variability behavior. We

6 See supplementary data in https://academic.oup.com/mnras/article/492/3/4553/5707433
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(a)

(b)

Figure 2.12: Composite spectrum of all Hi-BALs, Lo-BALs and FeLo-BALs.
Panel (a): full composite spectra for each BAL ionization class at the top
and the number of objects used at each wavelength bin at the bottom;
only bins computed with 100 or more spectra are plotted; all the solid lines
correspond to FeII lines. Panel (b): zoom in to the blue-shifted absorption
troughs of the CIV and SiIV lines of the composites; they are normalized
at the CIV⁄1548.9 restframe wavelength.
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(a)

(b)

Figure 2.13: Composite spectrum for BALs by BI bins of 419, 1152, 2502 and
57500 km s≠1, corresponding to the 25th percentile, median, 75th percentile
and maximum of the BI distribution of our BAL sample. Panel (a): full
composite spectra for each BAL BI bin at the top and the number of objects
used at each wavelength bin at the bottom; only bins computed with 100 or
more spectra are plotted. Panel (b): zoom in to the blue-shifted absorption
troughs of the CIV and SiIV lines of the composites; they are normalized
at the CIV⁄1548.9 restframe wavelength.
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Figure 2.14: Example light-curves of a Hi-BAL QSO (SDSS
100021.72+035116.5) and a non-BAL QSO (SDSS 130650.08+002753.8).

also compare the features of BALs in the fully-in-g sample with the rest of BALs to see if it
is possible to use the position of the CIV blue-shifted troughs in a given photometry filter as
a map for finding BAL QSOs via variability.

2.4.1. Methods

2.4.1.1. Data

To analyze the variability of our BAL QSO sample, we have recovered their light-curves
with at least four data points from ZTF DR207, covering observations from March 2018 to
October 2023 [Masci et al., 2018]. Note that we do not use data from broker alerts and the
DR data instead. This allows us to analyze the general variability behavior in BAL QSOs
in spite of their obscuration, which can lead to seemingly less variability that is not always
caught by alerts. Light-curves were found in the g-band for 40973 objects. Out of the 1517
objects with no light-curve, 47 were BALs. Figure 2.14 shows the light-curves of a randomly
chosen Hi-BAL and non-BAL QSOs as examples.

To clean the light-curves, we excluded bad or unusable magnitudes marked with a catflag

equal to 32768, and those with errors larger than one magnitude.

2.4.1.2. Feature Extraction

Their time-domain features were extracted using the code by 8 Malanchev et al. [2021],
used by the ZTF and future LSST brokers ANTARES [Matheson et al., 2021], AMPEL
[Nordin, J. et al., 2019] and FINK [Möller et al., 2020]. The computed features are described
as follows:

1. Amplitude ı: half the di�erence between the maximum and the minimum magnitude

2. AndersonDarlingNormal ı: test of whether a sample of data was drawn from a given
probability distribution

7 See https://irsa.ipac.caltech.edu/data/ZTF/docs/releases/dr20/ztf_release_notes_dr20.pdf
8 See https://github.com/light-curve/light-curve-python
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3. BeyondNStd ı: fraction of observations beyond n‡ from the mean magnitude; n was
set to 1.

4. Cusum ı: series of cumulative sums.

5. Duration: time-series duration.

6. Etae ı: adapted Von Neummann ÷ for unevenly sampled time-series; ratio of the mean
of the squares of successive magnitude di�erences to the variance of the time-series.

7. ExcessVariance ı: measure of the intrinsic variability amplitude.

8. InterPercentileRange ı: di�erence between two specified percentiles in a the magnitude
sample of the time-series.

9. Kurtosis ı: excess kurtosis of magnitude.

10. LinearFit ı: slope, error and reduced ‰
2 of a linear fit to the time-series with respect

to the observation errors.

11. LinearTrend ı: slope, error and noise level of a linear fit to the time-series without
respect to the observation errors.

12. MagnitudePercentageRatio ı: ratio between two percentile magnitude di�erences.

13. MaximumSlope ı: maximum slope between two consecutive observations.

14. MaximumTimeInterval/MinimumTimeInterval: maximum/minimum time interval
between two consecutive observations.

15. Mean: mean magnitude.

16. MeanVariance ı: ratio between the standard deviation and the mean magnitude.

17. Median: median magnitude.

18. MedianAbsoluteDeviation ı: median discrepancy of the magnitudes from the median
magnitude.

19. MedianBu�erRangePercentage ı: fraction of observations within 10% of the median
magnitude.

20. ObservationCount: number of data points.

21. OtsuSplit ı: di�erence of subset means, standard deviations and lower-to-all observa-
tion count ratio, for two subsets of magnitudes obtained by Otsu’s method split, which
separates data into two subsamples by minimizing intra-class variance and maximizing
inter-class variance.

22. PercentAmplitude ı: largest percentage di�erence between a magnitude and the me-
dian.

23. PercentDi�erenceMagnitudePercentile ı: ratio of a given inter-percentile range to the
median magnitude.
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24. Periodogram ı: peaks of Lomb–Scargle periodogram and the periodogram itself as a
meta-feature.

25. ReducedChi2 ı: reduced ‰
2 of the magnitudes.

26. Skew ı: skewness of magnitude.

27. StandardDeviation ı: standard deviation of the magnitude.

28. StetsonK ı: Stetson K coe�cient, a robust measure of the kurtosis.

29. TimeMean: mean time.

30. TimeStandardDeviation: standard deviation of time points.

31. WeightedMean: weighted mean of the magnitude.

After pre-processing, the recovered time-series have a mean and median of 466 and 373
data points. The shortest one has four detections (the minimum required for the appropriate
calculation of the features) and the longest one has 5052 detections. They cover 1794.53
days on average, and the shortest and longest light-curves are 3.04 and 1926.13 days long
respectively. They are unevenly sampled: the maximum and minimum time intervals between
consecutive detections are on average 184.84 and 0.01 days respectively. Furthermore, the
mean apparent g magnitude is on average 18.85 magnitudes.

2.4.1.3. Comparison Tests

We conducted a comparison of the distributions of time-domain features with two statis-
tical tests. A p-value (i.e. the probability that a statistical summary of the data, e.g. the
sample mean di�erence, would be equal to or more extreme than its observed value) threshold
– was set to 0.01 for all tests to gauge the statistical significance of the result [Wasserstein
& Lazar, 2016]. If pval Æ –, then there is a significant di�erence between the compared
distributions. However, due to the tricky interpretation of the p-value, other criteria were
used instead when possible. The statistical tests are described as follows:

1. Kolmogorov-Smirnov test (DKS) [Kolmogorov-Smirnov et al., 1933]: whether two sam-
ples were drawn from the same distribution. It ranges from zero to one and consists of
the maximum distance between the cumulative distribution functions. Thus more dis-
tinct distributions will result in a higher value. Features with DKS > 0.2 were flagged
as having di�erent distributions by KS.

2. Levene’s test (W ) [Levene, 1961]: checks for homoskedasticity (i.e. homogeneity of
variance) and provides a comparison of the standard deviations of the samples. The
p-value was used to assess this test.

These tests were run on those features that can be interpreted to represent some aspect
of variability. These are marked with a star ı in the list of time-domain features (see Section
2.4.1.2). According to the mentioned criteria, if a feature is flagged to be di�erent for the
samples, we proceed to assist the comparison with plots. This visualization is key to avoid
any biases caused by, for example, the imbalanced sizes of the compared samples or the
p-value interpretation.
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2.4.2. Results

2.4.2.1. Comparison of BAL and Non-BAL Features

Table 2.1 shows the results of the tests when comparing the features from BALs and
non-BALs. According to the Kolmogorov-Smirnov flag, the excess variance and the reduced
‰

2 are di�erent for both populations. On the other hand, the Levene’s test reveals that
the majority of features have di�ering variances between the samples. However, this is not
enough to claim that the feature for both populations have a significant di�erence. Thus,
to analyse these results further, we create a visualization of those features flagged by the
KS test to aid the comparison, including a histogram, violin plot, cumulative sum plot and
quantile-quantile (Q-Q) plot.

Table 2.1: Results of the Kolmogorov-Smirnov and Levene tests when com-
paring the time-domain features from BALs and non-BALs. The flags in-
dicate the tests indicate there is a significant di�erence between the given
feature between the samples.

Feature DKS pval,KS W pval,W KS Flag Lev. Flag
Amplitude 0.111 0.000 19.990 0.000 X
AndersonDarling 0.056 0.000 7.437 0.006 X
Beyond1Std 0.098 0.000 6.639 0.010 X
Cusum 0.119 0.000 13.659 0.000 X
ExcessVariance 0.232 0.000 38.327 0.000 X X
Etae 0.117 0.000 0.030 0.862
InterPercentileRange 0.181 0.000 77.587 0.000 X
Kurtosis 0.120 0.000 5.007 0.025
LinearFit_slope 0.047 0.006 0.019 0.890
LinearTrend_slope 0.053 0.001 0.042 0.838
MagnitudePercRatio 0.059 0.000 11.534 0.001 X
MaximumSlope 0.022 0.554 0.151 0.698
MeanVariance 0.194 0.000 65.458 0.000 X
MedianAbsDev 0.180 0.000 75.310 0.000 X
MedianBu�RangePerc 0.101 0.000 7.443 0.006 X
OtsuSplit_di� 0.186 0.000 52.575 0.000 X
OtsuSplit_lower 0.133 0.000 17.989 0.000 X
OtsuSplit_upper 0.179 0.000 65.592 0.000 X
PercentAmplitude 0.103 0.000 14.459 0.000 X
PercDi�MagPerc 0.190 0.000 66.756 0.000 X
Periodogram_peaks 0.045 0.008 24.773 0.000 X
Reduced_Chi2 0.202 0.000 7.949 0.005 X X
Skewness 0.086 0.000 0.758 0.384
StandardDeviation 0.184 0.000 63.041 0.000 X
StetsonK 0.108 0.000 0.066 0.798
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Figure 2.15: Histogram, violin plot, cumulative sum plot and Q-Q plot for
the excess variance feature in BALs and non-BALs. The histogram and
violin plots are zoomed into the peaks of the distribution.

Figure 2.15 shows a visualization for the excess variance feature distributions. As men-
tioned above, this is a measure of intrinsic variability that cannot be attributed to measure-
ment errors or noise [Allevato et al., 2013, Sánchez et al., 2017]. In spite of being a measure
of the variability amplitude able to flag intrinsically variable sources, it can depend and be
biased on the structure of the time-series themselves. Additionally, the excess variance can
be negative if the object is not variable and/or there are large errors. We have 19 BALs
and 174 non-BALs with negative excess variance, possibly indicating that not all our studied
objects have intrinsic variability. Furthermore, we see that the distribution of this feature
for non-BALs has heavy tails. In the violin plot, we can see that the distributions for each
population are distinct. However, this di�erence is minimal and both samples generally be-
have in a similar way in all four plots. Thus, it is not possible to conclude that the intrinsic
variability is significantly di�erent between BALs and non-BALs.

The other variability feature flagged by the KS test in Table 2.1 is the reduced ‰
2. Figure
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Figure 2.16: Histogram, violin plot, cumulative sum plot and Q-Q plot for
the reduced ‰2 feature in BALs and non-BALs. The histogram, violin and
cumulative sum plots are zoomed into the peaks of the distribution.

2.16 shows the comparison plots. This feature also is measure of variability, but unlike the
excess variance, it takes into account the observation uncertainties. In the Q-Q plot, we can
see that for the non-BALs, there is an extremely elongated tail that reaches two larger orders
of magnitude than the median. However, the other three plots reveal there is not a significant
di�erence between the reduced ‰

2 of BALs and non-BALs.
Overall, results indicate there are no major di�erences between the BAL and non-BAL

variability feature distributions.

2.4.2.2. Comparison of Fully-in-g BAL and non-Fully-in-g BAL Features

We also compared the features from the fully-in-g BAL sample with the rest of the BALs.
In Figure 2.17, we see the transmission files for the g filter in SDSS and ZTF overlap in the
majority of their wavelength ranges, and their e�ective wavelengths are close, di�ering only
by 74.70Å. Therefore, it is possible to compare the fully-in-g BAL sample with the rest of
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Figure 2.17: Transmission curves of the SDSS and ZTF g filters. The
vertical lines are at the e�ective wavelengths of 4671.78Å and 4746.48Å
respectively.

the BALs in a similar way as done in Sections 2.2 and 2.3.
If a significant di�erence is found, this could be used as a proxy for mapping the CIV into

di�erent filters in variability photometry by redshift. Thus, depending on the redshift of the
studied sample, a di�erent filter can be looked into to see if the same di�erence is found.

However, when comparing the features of these sub-samples of BALs, only the standard
deviation of the lower subset defined by the Otsu thresholding algorithm is flagged to be
di�erent for the compared samples. This algorithm was introduced by Otsu [1979] to analyze
images and find an optimal boundary between the foreground and background. In the case of
astronomical light-curves, the threshold separates the baseline variability of an object from
flares and periods of higher brightness. Then, the standard deviation of the lower subset
can be interpreted as the standard deviation of the baseline variability. We plotted a visual
comparison between this feature for BALs in the fully-in-g sample and the rest of BALs
in Figure 2.18. Although the distribution for BALs not-in-g is slightly more skewed, this
di�erence is not significant as revealed by the histogram and violin plot.

There is also no overall major di�erence between the feature distributions of BALs which
CIV throughs land within and without the g filter. The found di�erences seen in Figures
2.15, 2.16 and 2.18 are minimal

2.4.3. Future Prospects
As seen here, there is no indication that BALs and non-BALs vary in an intrinsically

di�erent way. However, given the known variability of the CIV absorption troughs [De Cicco
et al., 2017, Erakuman & Filiz Ak, 2017, Gibson et al., 2008, Green et al., 2023] and the
glimpses of di�erences found here, especially when comparing features in BALs which CIV
troughs land within and without the g filter, indicate there is possibly a di�erence to be
found. This is a challenging task and requires a higher order of complexity than the one
presented here.

A possibility for further investigation is to use ML, which could catch deeper level di�er-
ences. A the mTAN [Shukla & Marlin, 2021] ML model could be used to obtain a charac-
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Figure 2.18: Histogram, violin plot, cumulative sum plot and Q-Q plot for
the standard deviation of the lower subset defined by the Otsu thresholding
algorithm for BALs in the fully-in-g sample and the rest of the BALs.

teristic light-curve of a given sample. This would be an alternative to a pseudo-“composite”
light-curve and would allow for a more direct comparison by either visual inspection or clus-
tering in a lower-dimensional representation. This or other ML models have potential in
elucidating di�erences in BAL and non-BAL variability, if any.
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Table 2.2: Results of the Kolmogorov-Smirnov and Levene tests when com-
paring the time-domain features from BALs and non-BALs. The flags in-
dicate the tests indicate there is a significant di�erence between the given
feature between the samples.

Feature DKS pval,KS W pval,W KS Flag Lev. Flag
Amplitude 0.187 0.000 5.947 0.015
AndersonDarling 0.119 0.018 0.874 0.350
Beyond1Std 0.080 0.225 3.172 0.075
Cusum 0.106 0.047 1.698 0.193
ExcessVariance 0.103 0.059 2.418 0.120
Etae 0.145 0.002 0.846 0.358
InterPercentileRange 0.159 0.000 1.216 0.270
Kurtosiss 0.054 0.709 0.038 0.846
LinearFit_slope 0.078 0.261 0.305 0.581
LinearTrend_slope 0.072 0.353 0.292 0.589
MagnitudePercRatio 0.096 0.093 4.096 0.043
MaximumSlope 0.126 0.010 7.347 0.007 X
MeanVariance 0.174 0.000 2.123 0.145
MedianAbsDev 0.165 0.000 0.618 0.432
MedianBu�RangePerc 0.060 0.568 1.237 0.266
OtsuSplit_di� 0.164 0.000 2.942 0.087
OtsuSplit_lower 0.213 0.000 8.881 0.003 X X
OtsuSplit_upper 0.166 0.000 3.080 0.080
PercentAmplitude 0.193 0.000 6.318 0.012
PercDi�MagPerc 0.168 0.000 1.431 0.232
Periodogram_peaks 0.119 0.017 0.548 0.459
Reduced_Chi2 0.135 0.005 8.312 0.004 X
Skewness 0.111 0.033 1.031 0.310
StandardDeviation 0.174 0.000 3.416 0.065
StetsonK 0.075 0.300 0.197 0.658
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Chapter 3

Multimodal Learning Experiments

The task of identifying BAL QSOs through variability is challenging. So far, AGN light-
curve classifiers rely on the samples to be processed to have distinct variability behaviors. For
instance, even though QSO variability is thought to generally resemble a Damped Random
Walk, this is not always the case, or for every AGN type [Kasliwal et al., 2015]. However, in
the problem presented here, there is no easily recognizable di�erence between the light-curves
of BAL QSOs and other QSOs, as has been found in other works [Sánchez-Sáez et al., 2018]
and was confirmed for our particular dataset in Section 2.4, making this a more complex
classification problem.

In this work, we use a MML approach to test its potential for finding BAL QSOs in
time-domain surveys such as LSST by building and testing spectrum-assisted light-curve
classifiers. In particular, we aim to see if it is possible to connect the shape of the blue-shifted
absorption of CIV to variability. MML could potentially allow us to uncover and understand
any correlations between the shape of the CIV troughs and variability at a deeper level. We
test three di�erent ways of combining these modalities. We test early, late and multiplicative
fusion, with an attentive approach whenever possible. We expect the classification done with
spectral data or its PCA representation to be more accurate than the one done with light-
curves or their features. Even though we do not expect the combined classification to be
better than the one done with spectra, here we aim to obtain a light-curve classification that
is more accurate than the uni-modal one.

3.1. Data Modalities
We base our work on the sample described in Section 2.1. In this Section, we describe the

modality-specific pre-processing of the data done to prepare it for the ML methods.

3.1.1. Spectra
For ML, all the spectra processed should be at the same rest-frame wavelength range. In

order to trace the shape of the CIV absorption troughs instead of the whole spectrum of
the sources, we select the restframe region 1425Å Æ ⁄ Æ 1600Å in each spectrum, which
is equivalent to a redshift selection of 1.671 Æ z Æ 4.759. Figure 3.1 shows an example
spectrum with the selected wavelength range shaded in yellow.

Bad pixels are identified and discarded with the and_mask provided by SDSS. Then,
the spectra are re-binned to a grid of 503 pixels with bins of 0.346Å such that they all have
the same length. This way, we ensure our chopped spectra are all on the same wavelength
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Figure 3.1: Example of spectrum of Hi-BAL SDSS 024304.68+000005.4
at z = 1.9945 with the wavelength range used for ML shaded in yellow:
1400 ≠ 1600Å.

grid. Additionally, fluxes were normalized with the mean flux of each spectrum such that
the average is set to 1.0 (see Kao et al. [2024]).

3.1.2. Light-Curves
The light-curves are cleaned and their time-domain features are extracted as described in

Section 2.4. The features that describe some aspect of variability (those marked with a ı in
the list of time-domain features in Section 2.4.1.2) are used as tabular data, or as a proxy of
a lower-dimensional representation of the light-curves. These are 30 features in total.

3.2. Training and Test Sample
In this Section, we describe how the ML sample was selected, built, and separated into

the training an test sets.
After the redshift cut done for the treatment of spectra (see Section 3.1.1), our sample

was reduced to 843 BALs and 5569 non-BALs. Secondly, we made sure that all of these
objects have a present SDSS spectrum. There were two non-BALs and one BAL without a
spectrum, which reduced the sample to 842 BALs and 5567 non-BALs. Thirdly, in order to
apply multimodal ML, we also require the objects in our ML sample to have a ZTF g-band
light-curve available. This requirement further reduced our sample to 5363 non-BALs and
809 BALs. The final ML dataset based on these requirements has two main challenges to be
addressed.

Firstly, the number of objects, specially BAL QSOs, is very limited. An important prin-
ciple in ML is that any model requires a su�cient amount of data in order to learn from it.
Over-fitting or under-fitting may occur. The former could lead to poor generalization and
low performance, and the latter could result in the model not being able to learn because
there is simply not enough to learn from or the model is too simplistic for the given task. An
early relevant paper, Banko & Brill [2001] (see also Halevy et al. [2009]) showed that models
with varying complexity and size perform just as well when given a su�ciently large amount
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of data. However, simply retrieving more data is not always possible. Data augmentation
is often used to deal with this problem [e.g. van Dyk & Meng, 2001, Xie et al., 2020]. This
consists of creating new modified instances of existing data samples in order to increase its
size or diversity. Either way, if possible, retrieving more real data should always be prioritized
over more complex techniques.

Secondly, it is quite imbalanced. BAL QSOs encompass only 13% of the sample. Imbal-
anced datasets are a common problem in ML across many domains and there are extensive
methods specialized to deal with this issue [Brownlee, 2021, Gautam & Dey, 2022, Kumar
et al., 2021]. Imbalanced datasets can significantly hinder the performance of classification
tasks, as algorithms will simply train more times over the majority class, and ignore the
minority class. Two common strategies are to over-sample or under-sample the datasets.
Over-sampling, much like data augmentation, refers to increasing the number of instances of
the minority class to minimize the disparity in size, by either retrieving more data or creating
synthetic examples. A popular method used for this is the Synthetic Minority Over-sampling
TEchnique (SMOTE) algorithm [Chawla et al., 2002]. The disadvantage of synthetic over-
sampling techniques is that it directly depends on the algorithm used, which, if it has some
bias or limitation, could a�ect the performance of the ML model. Under-sampling refers to
discard instances from the majority class to make the imbalance less extreme. This can be
done either randomly or by some criterion specific to the problem domain (for an example in
AGN variability, see Sánchez-Sáez et al. [2021a]). When under-sampling, there is the risk to
end up selecting a sub-sample of the majority class that has some bias, which could then a�ect
the final results. It has been found that a combination of over and under-sampling instead of
either one on its own tends to be the best approach because it avoids the disadvantages and
limitations of each of these techniques. Additionally, the performance of algorithms trained
on imbalanced datasets must be adequately evaluated. Only using the accuracy can lead
to wrong results: it can easily result in 90% or more because it is correctly classifying the
majority class, whilst not providing any good classifications for the minority class. Thus, it
is relevant to use appropriate metrics when working with imbalanced datasets. Metrics such
as the precision, recall and confusion matrices, should be preferred over the accuracy.

Regarding our imbalanced dataset of QSOs, under-sampling the non-BAL sample is not
a good approach because, given the limited number of BALs, it is not ideal to also decrease
the overall size of the sample. Data augmentation or synthetic over-sampling are also poor
approaches given the multimodal nature of our present task. If we were to apply these meth-
ods, we would need to create a synthetic spectrum (or lower dimensional representation of
the spectrum) as well as a light-curve (or set of its time-domain features). The algorithm
could easily introduce biased correlations between the spectral and time-domain data, which
should be avoided since analyzing the intrinsic correlations between these modalities is pre-
cisely one of the goals of our work. Therefore, we have opted to over-sample the BAL QSO
sample by retrieving more real data. We retrieve 4578 BAL QSOs in the selected redshift
range (1.671 Æ z Æ 4.759) from the DR16Q catalog built by Lyke et al. [2020] that are not
already present in our sample, and download and process their spectra and light-curves as
described in Sections 2.3 and 2.4. Their spectra were recovered for all BAL QSOs, and their
light-curves for 4342 of them. Overall, we end up with a BAL QSO sample of 5151 instances,
in the required redshift range and with both data modalities available. A possible bias that
the extra BAL QSO sample could introduce is that these were not selected according to the
same criteria as the original dataset.

Our final ML dataset has 5151 BAL QSOs and 5363 non-BAL QSOs. It is no longer
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imbalanced, as BALs encompass 48.99% of the sample. To continue to take advantage of the
cleanliness of our original sample, we use its 809 BALs, (15.7% of the ML sample) for testing
and validating the performance of the models, whilst we use the retrieved BALs from the
DR16Q for training. We randomly split the non-BALs at the same fraction for training and
testing.

3.3. Multimodal Learning Methods
In this Section, we present the ML experiments done. We describe two multimodal en-

sembles: one with tabular models and other with dense neural networks (NNs) on tabular
data.

To evaluate the performance of our models, we look into the accuracy, precision, recall
and F1 scores. They are defined with the number of True Positives (TP), False Positives
(FP), False Negatives (FN), and True Negatives (TN):

Accuracy = TP + TN

TP + FP + FN + TN
(3.1)

Precision = TP

TP + FP
(3.2)

Recall = TP

TP + FN
(3.3)

F1 = 2
Recall≠1 + Precision≠1

(3.4)

While the accuracy gives an overall measure of correct predictions, the precision and recall
are particularly useful in our present work. The former quantifies the ability of the model to
avoid labeling negative instances as positive, which would mean labeling non-BALs as BALs.
Thus, the precision measures the purity of the predicted BAL sample. On the other hand,
the recall gives a measure of the models ability to find all positive instances, or labeling all
BALs correctly, providing a measure of completeness. A particularly useful metric is the F1

score. It consists of the harmonic mean between the precision and the recall, and concisely
provides an overall measure of purity and completeness in a single metric. It ranges from
zero to one, where higher values indicate better performance.

Additionally, the confusion matrix is a useful visual tool, consisting of a table that com-
pares true and predicted labels. The Receiver Operating Characteristic (ROC) curve and
the area under it (Area Under the Curve, AUC) are also a good visual measure for the per-
formance of the model. They plot FP rates against TP rates: the closest the curve passes to
the upper left corner of the plot, the better the performance of the model. Similarly, a larger
AUC indicates better predictions.

3.3.1. Tree Ensemble Models
Working with tabular data and traditional ML is a powerful approach [Shwartz-Ziv &

Armon, 2021]. Random Forests (RFs) tend to even outperform quite complex DL models.
Here, we use tree ensemble models on the tabular or 1-dimensional representation of each
of our data modalities. In particular, we test the performance of RFs and extreme gradient
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boosting (XGBoost).
RFs [Breiman, 2001, Kan Ho, 2016] consist of an ensemble of multiple decision trees. Its

key advantage is its double source of randomness in training to avoid over-fitting. Each tree
is trained on a random sub-sample of the training data selected by bootstrap aggregating
(bagging). Additionally, each node of each tree is trained on a random subset of the inputted
features, and the best split is chosen among those features only. Then, the trees are fused
by averaging them. RFs have many practical advantages. Even in high-dimensional datasets
with many irrelevant features, they are capable of finding the most relevant ones, which is
retrievable in the feature importance measure they provide. They are also quite robust to
outliers and train e�ciently. This algorithm also extrapolates well to work on imbalanced
datasets [Amrehn et al., 2019]. The balanced RF implemented by imblearn [Lemaître et al.,
2017] does this by drawing a random sub-sample from the majority class that is the same
size as the minority class bootstrap-selected sample, ensuring balanced training in each tree,
whilst still being able to see all instances of the data.

Furthermore, XGBoost is also a powerful method [Chen & Guestrin, 2016]. It consists
of an ensemble of weak decision trees that results in a strong predictor by learning in a
sequential manner, where each tree attempts to correct the errors from the previous one. It
applies gradient descent to minimize the given loss function, i.e. to iteratively move in the
direction of the steepest descent in order to minimize the given function in as little iterations
as possible. XGBoost in particular is called “extreme” because of its several improvements
over other gradient boosting methods. For instance, it prevents over-fitting by implementing
regularization terms, is computationally e�cient, systematically handles missing data and
supports early stopping.

For both RFs and XGBoost, we ran a grid search in order to tune their hyper-parameters
with a K-fold cross-validation k = 5 folds, and using the recall as the target score to prioritize
the completeness over the purity. For the RFs, we set use the out-of-bag (oob) samples to
true (i.e. using the unseen data instances at each tree to validate training). For both models
[Probst et al., 2019], we fit the number of estimators (i.e. the number of decision trees in the
RF) and the maximum depth (i.e. the maximum number of nodes in each tree). The rest of
the hyper-parameters were left to the default values implemented in scikit-learn, including
the Gini split criterion.

3.3.1.1. Spectral Dimensionality Reduction and Tabular Models
A useful technique for the classification of BAL QSO spectra is to reduce their dimen-

sionality before feeding them to an algorithm. Here, we use a similar approach to Kao et al.
[2024] in order to test which combination of dimensionality reduction technique and tree en-
semble classifier works best for our present dataset. The methods we use for dimensionality
reduction are described bellow.
Principal Component Analysis

PCA Jolli�e & Cadima [2016] is likely the most popular dimensionality reduction method.
In simply terms, it works by looking for the hyperplane that can preserve the highest variance,
and then projecting the data onto it. It has the advantage that it is possible to find the
optimal number of PCA components in a methodical way based on the variance. A good
criterion is to make sure that Ø 90% of it is preserved.

We found that for our dataset, 236 PCA components preserve 90.05% of the variance.
The best RF has a maximum depth of 50 nodes and 100 trees. The best XGBoost has a
maximum depth of 3 nodes and 500 trees.
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Locally Linear Embedding
Locally Linear Embedding (LLE) Ghojogh et al. [2020] is a manifold method that learns

local symmetries by linearly modeling local relations between the x-nearest neighbors, and
looks for a lower-dimensional representation that best preserves them.

We chose the best possible number of dimensions and neighbors by doing a grid search
on these parameters, with a K-fold cross-validation with k = 5, and with a target score of
the mean square error. We found that the best LLE representation for our spectra has five
components with 5-nearest neighbors. The best RF on this data has a maximum depth of
50 nodes and 500 trees. The best XGBoost has a maximum depth of 3 nodes and 100 trees.

Uniform Manifold Approximation and Projection
This manifold method was developed by McInnes et al. [2020] and it is based on Rie-

mann geometry and algebraic topology 9. It is faster and more robust toward large datasets
than other methods such as t-SNE [van der Maaten & Hinton, 2008]. The relevant hyper-
parameters in UMAP are the number of approximate nearest neighbors, which determines
whether the algorithm focuses more on the local or global structure of the data, and the
minimum distance between points in the low-dimensional space.

Once again, we found the best possible number of dimensions, nearest neighbors and
minimum distance with a 5-fold cross-validation grid search, and with a target score of
the mean square error. The best UMAP representation has three components, 5-nearest
neighbors and a minimum distance of 0.1. The best RF on this data has a maximum depth
of 50 nodes and 1000 trees. The best XGBoost has a maximum depth of 3 nodes and 100
trees.

Result
The accuracy, precision and recall scores obtained for each of the best models described

here are summarized in Table 3.1. The best results obtained are obtained when using PCA.
This is also the computationally cheapest method. By preserving 90% of the variance, we
lowered the dimensionality of our data from 503 to 242 components. When applying LLE
and UMAP, we obtained similar accuracies and, in spite of having higher precision scores
and a significantly lower number of components, the recall is 5% to 10% lower. Furthermore,
the choice between using a RF or XGBoost on the PCA representation is less obvious, given
that the recall is higher for the former but precision is higher for the latter. We choose the
RF over XGBoost to prioritize the completeness of the BAL predicted sample over its purity,
but note that this is a subjective assessment, since overall the performance of both models
is fairly good.

Moreover, we note that by applying a similar approach, Kao et al. [2024] also found
a combination of PCA and RF or XGBoost to be the best performing technique for the
dimensionality reduction and classification of BAL QSO spectra. PCA has also been found to
be a good dimensionality reduction technique for SDSS galaxy and QSO spectra in general,
with applications implemented in the astroML package10 [IveziÊ et al., 2014, Vanderplas
et al., 2012], and Brodzeller & Dawson [2022] also use PCA to model QSO spectra from
SDSS.

9 See https://pair-code.github.io/understanding-umap/
10 See https://www.astroml.org/book_figures_1ed/chapter7/fig_PCA_LLE.html
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Table 3.1: Results of spectral dimensionality reduction done for spectra per
method, number of dimensions, classifier and its accuracy, precision, recall
and F1 scores.

Method Dims. Classifier Accuracy (%) Precision (%) Recall (%) F1

RF 87.00 88.06 85.66 0.867PCA 236
XGB 87.86 92.16 82.82 0.872
RF 83.16 89.43 75.28 0.817LLE 5

XGB 83.59 90.60 75.03 0.821
RF 85.82 91.43 79.11 0.848UMAP 3

XGB 85.08 91.64 77.26 0.838

3.3.1.2. Light-Curve Tabular Models

We apply the grid searches directly on the 30 light-curve features selected for ML (see
Section 3.1.2; note that the errors, noise and ‰

2 of the LinearFit and LinearTrend were
excluded). The best RF has a maximum depth of 20 nodes and 100 trees, and the best
XGBoost model has a maximum depth of 3 nodes and 500 trees.

Table 3.2 shows the results for the best classifiers. The RF performs better than the
XGBoost model. However, its performance is quite poor. This behavior was expected, as
it was seen in Section 2.4 that there is little di�erence between the features of BALs and
non-BALs. The recall score is particularly low, which indicates that the correctly classified
BAL QSOs are a minority.

Table 3.2: Results of the light-curve features classification by model and its
accuracy, precision, recall and F1 scores

Classifier Accuracy (%) Precision (%) Recall (%) F1-score
RF 55.01 69.94 14.07 0.234

XGB 53.74 66.42 10.99 0.189

3.3.1.3. Multimodal Random Forests

Before combining the decision probabilities, we inspect the feature importances of each
RF. This tells us which features were the most relevant in reaching the final decisions. The
most important features are those that, when used to split a node, result in the largest Gini
impurity decrease. Figure 3.2.a shows the importances for the spectral RF, and Figure 3.2.b
the ones for the light-curve RF. For the spectral RF, we see that there is only a handful
of PCA components with importance higher than 10% and even 5%. Therefore, for the
multimodal RF we will only use the first 15 PCA components. Usually, using the largest
number of features possible is the best option. However, when too many features have such
little importance, they can confuse the model. For the light-curve RF, the behavior is similar.
Within the time-domain features, we choose those features with importance higher than 5%.

Figure 3.3 displays the ROC curves and confusion matrices for the separate RFs computed
on the sub-sample of features selected by their importance. As expected, the classification
obtained with the spectral PCA components is significantly better.
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(a) Feature importances of the RF trained on the PCA representation of spectra. Only the first 30 PCA
components are shown, out of 236.

(b) Feature importances of the RF trained on the light-curve features.

Figure 3.2: Feature importances of the uni-modal RFs.

Late Fusion
Next, we test the performance of an ensemble of the best found modality-specific models

mentioned above. For this, we compute a weighted average of the classification probabilities.
The weights are calculated as follows: first, the prediction with higher maximum probability,
which indicates higher confidence in the prediction, is chosen for each QSO; then, they are
normalized by the sum of the confidence levels from both classifiers, ensuring the weights
sum up to one. Given that the spectral classification is more reliable, this will naturally favor
it over the light-curve classification predictions.

The resulting prediction has an accuracy of 81.56%, a precision of 94.84%, a recall of
65.88% and an F1 score of 0.778. Figure 3.4 displays the obtained confusion matrix. When
comparing with the matrices in Figure 3.3.b, we see that the ensemble is much more reliable
at finding BAL QSOs than the light-curve classifier alone. Indeed, the recall score improves
by 51.79%. As a first test, this result indicates there is significant potential for MML in the
present task.
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(a) ROC curves of the spectral and light-curve RFs.

(b) Confusion matrices for the spectral and light-curve classifications.

Figure 3.3: Results of the uni-modal RFs.
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Figure 3.4: Confusion matrix of the late-fused RFs.

Early Fusion
As discussed in the introduction (see Section 1.3.1), late fusion allows for separate treat-

ment of the modalities. However, early fusion is the appropriate technique when we wish
to look into the deeper-level correlations between the modalities. Here, we train a single
RF on a joint representation of the spectral PCA components and light-curve features. The
important decision to be made here is how exactly to merge them such that the classifier can
properly process them. Here, we concatenate them and scale them with the RobustScaler

implemented by scikit-learn, which, as its name implies, is robust against outliers: it sub-
tracts the median X̃ from each value and divides by the interquartile range (IQR), which is
the range between the 25th and 75th percentiles 11:

Xscaled =

1
X ≠ X̃

2

IQR(X) (3.5)

We looked for the best classifier on the concatenated data by running a grid search on
a RF and an XGBoost model, in the same way as described in 3.3.1. The best RF and
XGBoost models have 500 and 300 trees, with a maximum of 20 and 3 nodes respectively.
Their performance is shown in Table 3.3. We choose the XGBoost model given that its
performance is slightly better.

Table 3.3: Results of the classification on the early-fused concatenated fea-
tures by model and its accuracy, precision, recall and F1 scores

Classifier Accuracy (%) Precision (%) Recall (%) F1-score
RF 83.68 93.54 71.57 0.811

XGB 84.40 94.94 71.94 0.819

11 See also https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html
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Figure 3.5: ROC curve and confusion matrix of the early-fused RF.

The results of the early-fused RF are displayed in Figure 3.5. We see that the AUC is
equal to 0.93, which is quite good. All the evaluated metrics are better that those obtained
by the RF built with late fusion, even if by a minimal di�erence. In particular, the amount
of BALs that are correctly classified increase from 66% to 72/%, as seen in the confusion
matrices and the increase of 6.06% in the recall score. Therefore, when using tabular data,
we conclude that early fusion is preferable in this case.

Furthermore, it is relevant to see how the model is learning from both modalities, and if it
finds any correlations between them. This can be done by inspecting the feature importance
of the model. In Figure 3.6, we see that the few most important features are indeed a mixture
of both modalities and not from a single one. Interestingly, the most relevant input with an
importance of 32.82% is a light-curve feature, the standard deviation of the lower subset
defined by the Otsu thresholding algorithm [Otsu, 1979]. This can be interpreted as the
standard deviation of the baseline variability. After it, the second PCA component is the
most important feature with an importance of 20.22%. This indicates that the model indeed
benefits from the combined modalities, showing promise for this approach.

3.3.2. Dense Neural Network
The next multimodal test we run is a dense NN trained on the same tabular data as the

early-fused model described in the previous section.

3.3.2.1. Description of the Model and Fusion Technique

Figure 3.7 displays the structure of the model. First, each modality is processed separately
through two dense layers with ReLU activation functions, with a batch normalization and
dropout layers and L2 regularization at each of them to prevent over-fitting. The former
maintains the mean and standard deviation close to 0 and 1 [Io�e & Szegedy, 2015], and
the latter randomly turns units o� such that there is not a significant imbalance between
over-trained and under-trained neurons [Labach et al., 2019, Srivastava et al., 2014]; we use
a dropout fraction of 20%. The spectral PCA components are increased in shape in the NN
from 15 to 32 and 64, whilst the light-curve features go from seven to 16 and 32. Then,
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Figure 3.6: Feature importance of the early-fused RF.

there is a third dense layer with a sigmoid activation that learns to predict how reliable the
output of each modality is. Its output is used by an addition and subsequent lambda layers
simply to normalize the sum of the reliability scores to unity. The weights have an added
minimum of 10≠6 to ensure there is no division by zero. Next, we apply multiplicative fusion
by weighting each modality by their corresponding reliability scores, and then concatenating
them. Then, the concatenated data are passed through an additional dense layer (with batch
normalization, dropout and ReLU activation as well) and then are finally outputted by the
final dense layer with a soft-max activation.

When training the model, we use an Adam optimizer [Kingma & Ba, 2017] with a learning
rate of 10≠3, categorical cross-entropy for the loss function, and accuracy for the target metric.
We also apply an early stopping regularization with a patience of 15 epochs, which means the
training will stop after 15 epochs with no improvement, and we reduce the learning rate by a
factor of 0.5 when one of the target metrics has become stagnant for 5 epochs. Additionally,
we use the same fraction of train to test sample sizes to define a validation set from the
training data.

3.3.2.2. Results

Figure 3.8 displays the results from the dense NN. The model trained for 54 epochs
before stopping. The top panel shows the loss and accuracy for the training and validation
sets, which behave as expected with no major signs of over-fitting. Before epoch ≥ 30, the
validation set exhibits a zig-zag pattern which could potentially indicate issues in training
such as over-fitting. However, this behavior subsides later on, most likely indicating that the
several regularization techniques implemented were e�ective in preventing over-fitting. In
the bottom panel of the figure, we display the ROC curve, which is quite good, with an AUC
of 0.96, and the confusion matrix. We see that, even though the improvement is not drastic,
the NN predictions are more reliable over the ones by the early-fused XGBoost model (see
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Figure 3.7: Structure of the dense NN trained on both modalities with
multiplicative and attentive fusion.
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(a) Loss and accuracy of the model by epoch.

(b) Confusion matrices for the spectral and light-curve classifications.

Figure 3.8: Results of the uni-modal RFs.

Figure 3.5). The model has an overall accuracy of 86.03%, and weighted precision, recall and
F1-score of 88.10%, 86.03% and 0.858 respectively (“weighted” here means that the averages
were weighted by the number of true positives in each class). The non-weighted precision,
recall and F1-scores are equal to 97.07%, 73.67% and 0.838 respectively. Compared with the
early-fused XGBoost model, we see an improvement of 2-3% in each of the evaluated metrics.
In particular, the weighted recall is fairly good, indicating that, so far, the dense NN is the
best at recovering the largest possible amount of correctly classified BAL QSOs.
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Chapter 4

Summary and Future Prospects

In this work, we presented a comprehensive analysis of a clean sample consisting of 1419
BAL QSOs and 41086 non-BAL QSOs built by Naddaf et al. [2023] from the SDSS DR7
QSO catalogue [Shen et al., 2011].

Our first aim was to provide a detailed characterization of this sample. We did this by
constructing mean SEDs, composite spectra and analyzing their light-curves. We compare
the BAL QSOs to the non-BAL QSOs through these tools. Additionally, we define the “fully-
in-g” sub-sample, which corresponds to those BAL QSOs which CIV absorption troughs land
fully within the g-band of SDSS. We compare the objects in this sub-sample to the rest of
the BAL QSOs (called the “not-in-g” sample) to see if the position of the absorption features
and, in particular, the variability of the CIV troughs can have an impact on the overall
photometry, SED or light-curves of the sample.

Our derived mean SEDs successfully recover the redder UV-to-optical continuum found
in previous works, as well as a steeper slope in the IR range. Both SED characteristics point
to high dust extinction in the BAL QSOs. Our results are consistent with dust components
being present in the outflows, which in turn is thought to be a major factor in the accelerations
mechanisms of the moving material, particularly radiation pressure. We also find the SED
derived for high-luminosity BAL QSOs by Saccheo et al. [2023] has a flatter UV continuum,
but discard that this di�erence is a function of luminosity given that several of our BAL
QSOs have high luminosities as well. In addition, the derived SED for the non-BALs in
our sample is similar to others found in the literature, in particular the one by Krawczyk
et al. [2013]. We explain the seen di�erences by a di�erent redshift distribution, sample sizes
or other selection e�ects. We also find that the SED for the fully-in-g sample has a more
pronounced dip, which could potentially indicate stronger dust extinction. However, given
the limited number of objects used to derive this mean SED, it is not possible to conclude this
physical di�erence. Further studies with larger samples in the given redshift ranges should
be conducted to see if this behavior is factual or if it is just a selection e�ect of the sample
studied here.

Furthermore, we look at the spectroscopic characteristics of the sample, based on spectra
fetched from SDSS DR18. We also fetch the Balnicity and absorption indices (BI and AI)
from the DR16Q [Lyke et al., 2020]. CIV emission is similar between BAL and non-BAL
QSOs, indicating that what distincts them is indeed the blueshifted troughs. Within BAL
QSOs, more extreme absorption is less common.

We build the composite spectra in order intuitively describe the characteristics of the
overall sample. We are able to recover the distinct spectral shape of Hi-BALs, Lo-BALs and
FeLo-BALs. We see the redder continuum in the Lo-BAL composite, but fail to see significant
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absorption blueward of the MgII line, which is most likely due to varying trough shapes that
wash each other out. Moreover, in the FeLo-BAL composite, the rarest class, we are able to
see their defining absorptions at FeII lines, as well as excess emission at several regions of its
continuum, which is not seen in the other BAL classes. FeLo-BALs are a distinct and special
case with dedicated studies in the literature, and in our composites we are able to see their
unique characteristics. Moreover, we built separate composites separating our BAL QSO
sample by BI bins. Consistent with stronger dust extinction, we find that for higher BI, the
continuum of the composite tends to be flatter. We are also able to see varying absorption
shapes, with di�erent depths, widths and blue-shifts, without any trend with BI. Indeed, as
the BI indicates any absorption and does not di�erentiate by properties, we propose that
creating a more detailed description of the CIV absorption by its shape, depth and blue-
shift will be key in characterizing the structure, distribution and dynamics of the outflowing
material in BAL QSOs and their relationship to the host galaxies, which would be essential
for future AGN feedback studies.

Then, we looked into the variability of our sample by studying their ZTF g-band light-
curves. We computed their time-domain features with code used by several ZTF and LSST
brokers. BAL QSOs are thought not to have any characteristic variability behaciour that
can easily distinguish them from other QSOs. To confirm whether this is true for our present
sample, we conducted statistical tests to compare the distributions of those light-curve fea-
tures that can be interpreted as some aspect of the variability of BALs and non-BALs. We
also compare the features of BAL QSOs in the fully-in-g and not-in-g sample, which is con-
sistent given that the g-band in ZTF and SDSS cover a similar wavelength range. We found
only slight di�erences in a couple of features, and no significantly distinct variability behavior
attributed solely to BAL QSOs as opposed to non-BAL QSOs. Some of the objects in our
sample have negative excess variance, indicating that they could possibly be not variable
at all. Moreover, when comparing the features of the BALs in the fully-in-g and not-in-g
samples, we find a small di�erence in the distributions of the standard deviation of the lower
subset defined by the Otsu thresholding algorithm, which can be interpreted as the standard
deviation of the baseline variability. However, this di�erence is not hugely significant, making
it not plausible to conclude that this is the key for BAL QSO identification via variability.

The second main aim of this work was to test whethter a multimodal learning approach
can assist in the identification of BAL QSOs through variability. We motivate this with
the LSST in mind. Finding a way to find these objects through their light-curves will be
key in order to not miss the large amount of them expected to be found, and to use them
for invaluable AGN feedback and galaxy evolution studies. The modalities we work with
here are the SDSS spectra restricted to 1425Å Æ ⁄ Æ 1600Å in the restframe, which covers
the CIV absorptions well, and the clean ZTF-g light-curves. The sample of our data that
satisfies these requirements is far too small and imbalanced for ML (5363 non-BALs and 809
BALs). In order to avoid any systematic biases, we choose to gather more real data instead
of applying data augmentation algorithms. We recover 4342 additional BAL QSOs with
both SDSS spectra and ZTF light-curves, such that our ML sample is no longer imbalanced
and both classes have more than 5100 instances. We use the BAL QSOs in the originally
defined sample for the test set in order to continue to benefit from the cleanliness of this
sample selection. We test two MML models: tree ensembles and a dense NN, both trained
on tabular data.

We process the spectra and light-curves separately at first. We look for the best combi-
nation between a method to reduce the dimensionality of the spectra and classify their new
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representation. We find that PCA is the best at representing spectra at a lower dimension,
which has been found and applied by other works as well. Both a random forest (RF) and
extreme gradient boosting (XGBoost) perform similarly well, with the RF obtainind a better
completeness for the correctly classified BAL QSOs. Similarly, we test whether a RF or a
XGBoost model is better at classifying light-curve features. Here, we use only those that
are interpretable as some aspect of variability and will not introduce any bias. We find that
the RF has a better performance than the XGBoost model, but it is still fairly poor, which
is expected given that there was no significant di�erence found between BAL and non-BAL
QSO features or variability characteristics.

Then, we test two multimodal RF: one with early fusion (i.e. concatenation of the features
of both modalities before inputting them into the model) and late fusion (i.e. decision level
fusion where the prediction probabilities are combined by, for instance, averaging them). For
the late-fused RFs, we apply a weighted average of the decision probabilities that allows for
the model to automatically pay more attention to the modality that is more reliable, i.e. the
spectra. For the early-fused model, we take an extra step to scale the concatenated features so
that they can be consistently processed, and then we look for the best performance between
a RF and an XGBoost model, and find that the latter provides slightly better predictions.
Finally, we compared the performance of the early-fused and late-fused models, and found
that early-fusion is preferable given that it is able to learn correlations between the modalities
at a deeper level. Indeed, the feature importances of the early-fused XGBoost model reveal
that the most relevant features are not from a single modality, but rather a combination from
both.

We note that, interestingly, the most relevant feature is the standard deviation of the
lower subset defined by the Otsu thresholding algorithm, which was found to have one of the
most noticeable discrepancies between BALs in the fully-in-g and not-in-g samples, as seen
in Chapter 2. To rule out this being a coincidence or a bias, further studies looking into the
Otsu thresholding algorithm and its significance for variability classification of BAL QSOs
should be conducted.

The second model we build is a dense NN with multiplicative and attentive fusion. The
former ensures that the model will learn deep inter-modality correlations, and the latter that
the most reliable modality has larger weights. We implement several techniques to prevent
over-fitting and see that the NN trains well across epochs and successfully provides the best
predictions out of all the MML models tested here. It was able to correctly identify 74%
of the BAL QSOs in the test set, as opposed to only 14% obtained by light-curve feature
classification on its own. We conclude that multimodality shows great potential for the task
of identifying BAL QSOs through variability.

Given the promising results from our multimodal approach, future studies should focus
on refining these models further. A regressive MML model able to predict spectral features
from light-curve ones could prove useful. We also propose the potential use of a Variational
Auto-Encoder (VAEs) [e.g. Zhao et al., 2017] accompanied by such a model. VAEs have been
found to be able to successfully learn latent representations of spectra, and they have the
key advantage of providing synthetic spectra drawn from the latent space. Thus, we propose
the implementation of a MML model built on light-curve features and latent representations
of spectra obtained by a dedicated VAE. Implementing the following pipeline for the LSST
could be ground-breaking: LSST light-curves will provide features that can be processed by
the MML model, which in turn will be built to predict the corresponding spectral latent
representations; then, the latent features could be inputted to the VAE, which can then pro-
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duce synthetic spectra from the latent space. This framework has the potential for enabling
discoveries that are currently not possible in BAL QSO studies.
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