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Abstract

Gravitational waves (GW) have been observed by ground-based laser interfer-
ometer detectors for almost a decade now. The only GW source observed so far
is a compact binary coalescence that produces a well-modeled waveform. Another
type of gravitational waveform that has been theorized is the burst GW which
is sourced by stellar core collapses or changes in differential rotation of compact
objects. However, the waveforms of burst sources are difficult to model, and the
supplied model might not give explicit information on the nature of the source. In
this thesis, we aim to infer the source properties of a burst-type GW in a Bayesian
manner. More precisely we use the Bayes factor, a statistical figure-of-merit which
compares evidences or marginalized likelihoods of different models. The Bayesian
inference pipeline we introduce here is based on bilby, a python-based Bayesian
inference library. Our pipeline compares models by performing nested sampling
on GW strain data. This method allows us to calculate evidences and posteriors
on the fly. We adapt the pipeline to a comparison scenario where the data is
modeled to contain disparate burst-type GW signals. The Bayes factor helps us
make inferences on which model to prefer; although to fully determine the na-
ture of a burst waveform’s source, the Bayes factor should be used in conjunction
with other statistical inference tests. The performance of our Bayesian inference
pipeline seems promising and it is expected to be used for analysis of real GW
events. As an application, we analyze the GW strain data recorded during the
Vela pulsar glitch event last 29 April 2024. The pipeline is adapted to a detection
scenario where we use the signal-to-noise Bayes factor for comparing two models
– one where the data contains a damped sinusoid signal (from the excitation of
the neutron star’s fundamental modes) and another model where the data does
not contain this signal. We infer a reasonable limit for the amplitude of a damped
sinusoid signal so that the current and design sensitivity LIGO-Virgo detector
configurations can successfully detect such signals.
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Chapter 1

Introduction

In this chapter we introduce the main properties of gravitational waves (GW)

which is a prediction of general relativity (GR) [1, 2]. We then talk about the

principles of GW detection as explored in [3–5]. We also list some of the sources

of GW including the focus of this thesis which are the short-duration unmodeled

(burst) GW sources. Then we outline the objective and content of this thesis.

1.1 General Relativity and Gravitational Waves

The general theory of relativity (GR) is Albert Einstein’s way of describing

gravity that does not violate his special theory of relativity, in contrast to Newto-

nian gravity. Its core equation, the Einstein field equations, relates the distribution

of matter and energy to the curvature of space-time:

Rµν −
1

2
Rgµν = 8πTµν . (1.1)

Here and for the rest of the chapter, we consider natural units where G = c = 1,

unless otherwise specified. The right-hand side of Eq. (1.1) describes the physical

distribution of matter and energy in one tensor known as the stress-energy tensor

Tµν . The solution of this set of equations is called the metric gµν , a geometric

object that quantifies distances and angles in a given manifold. The left-hand side

of Eq. (1.1) is composed of a combination of the metric and its derivatives as

embedded in the Ricci tensor Rµν and Ricci scalar R. These two are derived from

the more general Riemann tensor Rα
βµν , which consists of Christoffel symbols Γα

βν

that reflect the variations of angles and distances on a curved manifold.

One fascinating result of GR involves the wave nature of gravity: using proper

approximation techniques, a wave equation arises from this set of field equa-
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1.1. General Relativity and Gravitational Waves

tions. In a four-dimensional system with a metric signature xα ≡ (t, x, y, z) ≡
(−,+,+,+) we can expand the equations in the weak-field limit by using

gµν = ηµν + hµν , |hµν | << 1. (1.2)

This describes a small perturbation hµν to the background Minkowski (flat-field)

metric ηµν in the space-time geometry. To further simplify the field equations, we

can change our coordinates such that a Lorenz gauge transformation is made. We

make infinitesimal changes in coordinates, leaving the Riemann tensor (and sub-

sequently the Ricci tensor) unchanged. This is achieved by forcing the divergence

of h̄µν ≡ hµν−hηµν/2 (also called the transverse-traceless perturbation) to be null,

i.e. ∂βh̄αβ = 0. This simplifies the field equations to

2h̄µν ≡ ηαβ∂α∂βh̄µν = −16πTµν . (1.3)

We can now see that h̄µν are solutions to a (sourced) wave equation, hence we call

them “gravitational waves". If we let Tµν = 0 (which means we are considering

solutions in vacuum), we can easily solve the wave equation by giving a simple

solution in the form of a monochromatic plane wave, h̄µν = Aµνe
ikαxα . Additional

gauge conditions can simplify the form of Aµν , in addition to the Lorenz gauge that

asserts its orthogonality with the wavevector kµ, i.e. kµAµν = 0. In particular, we

can write these constraints including the Lorenz gauge as follows:

kµh̄µν = 0 (1.4)

h̄µνU
µ = 0 (1.5)

h̄µµ = 0 (1.6)

where Uµ is the 4-velocity components of an observer in the Lorenz gauge that are

experiencing the plane waves. In this so-called traceless-transverse (TT) gauge,

h̄µν = hµν , hence the name given to the perturbation. If, for example this observer

in the TT and Lorenz gauge has a 4-velocity (0, 0, 0, 1) then the Aµν terms simplify

to


Att Atx Aty Atz

Axt Axx Axy Axz

Ayt Ayx Ayy Ayz

Azt Azx Azy Azz

 −→


0 0 0 0
0 Axx Axy 0
0 Ayx −Axx 0
0 0 0 0

 (1.7)

2



1.1. General Relativity and Gravitational Waves

We see that the choice of gauges limits the GW polarizations to the two physical

terms, Axx and Axy. This greatly simplifies our picture of a gravitational wave.

How do sources produce these waves? In the presence of a source, Tµν ̸= 0.

We can then solve Eq. (1.3) by using the Green’s function for the box operator

and retaining only the retarded-time solution to conserve causality. We can write

the solution in a Cartesian coordinate system in Lorenz gauge xα : (t, x, y, z) as

hµν(t,x) = 4

∫
dx′ Tµν (t− r(x′),x′)

1

r(x′)
(1.8)

where r ≡ |x − x′| is the distance between the field point x’ and the source

point x, and that boldface represents a 3-dimensional space vector. We can

further approximate this solution by considering a source that is much farther

away from an observer, confined spatially in a finite volume of characteristic

length L, and moving at an adiabatic rate such that 1/Tµν(∂Tµν/∂t) << L. Using

these approximations, r ≈ |x| and can be considered a constant inside the integral;

hence

hµν(t, r) ≃
4

r

∫
d3x′ Tµν(t− r,x′). (1.9)

However, it is rarely the case when we can define the stress-energy tensor

analytically, which makes the integration difficult. Instead, we use the properties

of the stress-energy tensor: conservation laws require it to be divergence-free which

allows us to link the temporal (0) and spatial (i ∈ [1, 3]) components of the stress-

energy tensor. Then we can further simplify by assuming a non-relativistic source

∂xi/∂x0 << 1 −→ T00 ≃ ρ (where ρ is the mass density) and rewrite the previous

equation as

hij(t, r) ≃
2

r

∫
d3x′ x′ix

′
j

∂2ρ

∂t2
(1.10)

=
2G

rc4
Ïij

(
t− r

c

)
(1.11)

where we used the notation Iij ≡
∫
xixjρ(t,x)d3x to denote the mass quadrupole

tensor of the source, and the overhead dot denotes differentiation with respect to

time. We also restore the physical units to emphasize the small amplitude of the

metric perturbation. Hence we see that in order to produce gravitational waves,

3



1.2. GW Detection principles

we must have at least a change in the quadrupole moment, as the dipole moment

cancels out for mass.

How do GWs interact with matter? We can observe the effect of GW on matter

by considering two free-falling particles (e.g. two test-mass mirrors) and using the

local inertial frame of one mirror instead of the TT and Lorenz gauge which follows

the motion of the particle. In this local inertial frame the vector ξα connecting the

geodesics (free-fall paths) of the mirrors will have an acceleration according to the

nonzero components of the Riemann tensor in first order hµν , which is proportional

to the perturbation tensor hij (here, we use latin indices to indicate the labels 1-3

such that xi ≡ (x, y, z)). Integrating the equations of motion for ξα will give

ξj = Lj +
1
2
hjjLj, where Lj is separation displacement in the jth direction, and

hjj is one of the polarizations of the metric perturbation in the TT gauge (hereby

called the plus polarization, or h+). The other polarization’s effect on matter is

the same, although the correlation between the perpendicular directions x and y

in the perturbation hxy means that it will perturb the masses in an anti-correlated

manner along these directions (hence the name cross polarization, or h×). The

effective difference in the separation length will be given to first order in hjj by

δLj

Lj

=
1

2
hjj (1.12)

which is also the same magnitude for the cross polarization.

In this regard, the GW can be thought of as imparting energy on the system of

masses; hence it should carry energy from the source. The flux of a gravitational

wave is a measure of the energy it carries through a unit surface per unit time. It

is given (in SI units) by [2, 4]

FGW =
dEGW

dAdt
=

c3

32πG
⟨ḣTT

ij ḣ
TT
ij ⟩ = c3

16πG
⟨ḣ2+(t) + ḣ2×(t)⟩ (1.13)

where the angled brackets indicate time averaging over one period T .

1.2 GW Detection principles

While GR theory gives us a good grasp of how a GW is produced, how

it behaves, and how it interacts with matter, the detection of GW is another

interesting story. Embedded in the Eqs. (1.1), (1.3), and (1.11) is the physical

4



1.2. GW Detection principles

factor G/c4 ∼ 10−44 in SI units, which makes the amplitude of the perturbation hµν
really small. How are GW astronomers able to detect such a small perturbation?

1.2.1 Laser Interferometry and the LIGO-Virgo detectors

Just a century after the initial publication of the existence of GWs [1], these

waves have been directly observed in the two detectors that form the Laser In-

terferometer Gravitational-wave Observatory (LIGO) [6] in the United States on

September 2015. Labeled as GW150914 (for the day it was detected), this event

is the merger of two inspiraling black holes [7]. Another GW detector in Italy

called the Virgo detector [8] joined the LIGO detectors in 2017 and contributed

to the observation of a binary neutron star merger labeled GW170817 [9], which

allowed electromagnetic telescopes to observe the aftermath of this coalescence in

an event that kickstarts multi-messenger astronomy [10]. In this thesis we work

with data from these three GW detectors.

LIGO and Virgo (and other modern GW observatories such as the Japanese

KAGRA detector [11]) use laser interferometry, a technique that requires the

interference of light (in this case, by coherent stimulated emission) to provide

information on the most minute of motions. Laser interferometers are usually

configured to have a layout that splits the incoming laser beam into two using

a beam splitter mirror. Then these beams travel through perpendicular arms

that have mirrors as endpoints, reflecting them back to the beam splitter which

recombines them. This configuration is called a Michelson interferometer [5], and

its perpendicular arms are perfect for observing the effect of GW on matter.

In fact, for the setup leading to Eq. (1.12) it is assumed that the separation

length between the test masses or mirrors can be changed. In laser interferometry,

it is the phase shift of the light emitted from the beam splitter that can provide

information on some passing GW. This phase shift can be written as [3]

∆ϕ =
2π

λ
(2Lx − 2Ly) (1.14)

where we have assumed that the optical paths are placed in the x and y axis of

our TT gauge coordinates, and that λ is the wavelength of the photons emitted

from the beam splitter. Then, assuming a passing GW along the z−direction with

a plus polarization of the form h+ ≡ hxx = h0 cos(2πfGW t), we can calculate Lx

by calculating the optical path along one arm and using the null light ray geodesic

5



1.2. GW Detection principles

(since we’re dealing with a path “connected" by photons),

ds2 = 0 = (ηµν + hµν)dx
µdxν (1.15)

= −dt2 + (1 + hxx)dx
2 + (1 + hyy)dy

2 (1.16)

which gives an estimate for Lx (when dy = 0 or for Ly when dx = 0):

Lx =

∫
dt =

∫ L

0

√
1 + hxx(t− x)dx (1.17)

= L+
1

2πfGW

sin(2πfGWL)h0 cos(2πfGW (t− L)) (1.18)

where we have assumed L to be the total length of the arm placed along the x-axis

and used trigonometric identities and binomial approximations [12]. In terms of

the “change in arm length", this amounts to ∆L/L ∼ h0/2 which provides the

probe to gravitational waves. Hence, the data obtained from these interferometers

are usually called “GW strain data". In using laser interferometry, what is actually

measured is the phase shift of the photons which makes GW detectors behave more

like clocks than rulers [12].

However, in order to probe the small GW amplitudes the length of the arms

should be proportional to the GW frequency and the speed of light c. For a

typical binary neutron star source with a typical merger frequency of about 1500

Hz, the length of the arm should be about 50 km, which is too long. Hence

advanced interferometers are equipped with enhancements that allow us to shorten

the arm lengths. The LIGO detectors located at Hanford and Livingston have

arm lengths of 4 km placed in a perpendicular L-shaped configuration, while the

Virgo detector located in Cascina has an arm length of 3 km (also placed in L-

shaped configuration). In addition to the end mirrors, a semi-transparent mirror is

added at the beginning of each arm to create a Fabry-Perot cavity that enhances

the optical path. Despite the high quality of the coatings of the mirrors, the

high power laser circulating in the cavities generate thermal deformation that are

compensated with heat regulators to prevent the cavities to be uncontrolled.

In observing the phase shift it is not automatically determined what caused it.

Actually many sources of noise generate phase shift – some of these noise sources

are related to the detector itself. An obvious example is that photons do not arrive

at the mirror one-by-one. The number of photons arriving can be realistically

described by a Poisson distribution that exerts a length shift between the two

6



1.2. GW Detection principles

equal arms that is called the shot noise. This noise is part of the class of noises

called quantum noise, which also include the radiation pressure noise produced

by the photons at low frequency. Furthermore, the ground-based detectors have

to deal with the motion of the Earth’s surface that appear as seismic noise. And

finally in the mid-frequency range, the detectors are limited by thermal noise

from sources such as the Brownian motion of atoms in the mirror coatings. The

fundamental noise sources give the colored noise curve showed in Figure 1.1.

Figure 1.1: Amplitude spectral density (ASD), or
√
Sn(f) of the advanced LIGO

and Virgo detectors at their design sensitivity, where Sn(f) is the Power spectral
density (PSD)

In this figure, the noise amplitude spectral density (ASD) that current detectors

should reach circa 2029 [13] is shown as a function of frequency. Here, the different

noise sources contribute to the increase of amplitudes at different frequencies. In

real data, many noise sources limit the sensitivity of the detectors, together with

non-Gaussian transient noise sources collectively known as “glitches". There are

also narrow spectral features called “lines" that are present in real GW spectrum.

They are due to mechanical resonances and/or electromagnetic noise coupling

(such as the 60 Hz AC power line for US). All of these are permanent noise

sources and can be confused with a genuine (continuous) GW signal. The goal of

many engineers and physicists in the collaboration is to bring the current detectors

7



1.2. GW Detection principles

to their design sensitivity, which means almost all of the noise sources could be

mitigated except for the most fundamental ones described above.

1.2.2 GW strain data

How do GWs appear in laser interferometer detectors? The GW detectors

work like radio antennas, where any astrophysical source from any direction in the

sky can be superimposed within the noise. However, there are only certain areas

of the sky where the GW detectors work properly; to the rest of the sky, they are

practically “deaf". The main data output of each detector is a time series (labeled

as s(t)). The GW signal appears as a time series h(t) that is projected onto the

detector. This projection depends on the sky location of the source (given in right

ascension α and declination δ) and the relative position of the detector at the time

of arrival. The projected GW can be written as

h(t) = h+(t)F+(α, δ, ψ) + h×(t)F×(α, δ, ψ) (1.19)

where F+ and F× are called the “antenna pattern" functions and ψ is one of the

Euler angles that rotates the source frame into the detector frame. The antenna

pattern functions encode the information on which parts of the sky can GWs be

detected. This time series form of the signal is assumed to be added onto the

detector noise n(t) such that the total data output, also called “strain", is given

by

s(t) = n(t) + h(t). (1.20)

There is a short time delay between the arrival time of GWs in the geocenter

and in the detectors (of the order of 1 − 10 ms). This time delay of the signal

travelling between the detectors allows us to disentangle a real astrophysical signal

from a terrestrial one.

In practice, GW strain data can be fetched as a discrete time series that is

sampled at 16384 Hz. In this thesis, we use gwpy [14], a python-based package that

allows users to fetch GW strain data either directly from the proper channels in

LIGO-Virgo detectors or from publicly available websites such as the Gravitational

Wave Open Science Center (GWOSC). 1

1https://gwosc.org/
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1.2. GW Detection principles

In order to properly analyze strain data the noise n(t) must be characterized.

The detector noise is the sum of all noise processes including the fundamental

noise sources described earlier. For short timescales we can assume that noise is

stationary 2. Stationary noise allows us to work in the frequency domain where

the noise is uncorrelated between frequency bins [5]. Here, the autocorrelation

function (which contains information on the statistical properties of the noise) in

time domain can be written as the Power Spectral Density (or PSD, also denoted

by Sn(f)) in the frequency domain via a Fourier Transform [5]. From the PSD we

can derive the ASD and other quantities that can characterize the noise and the

signal [15].

One way of quantifying the detectability of a waveform h(t) is by calculating the

optimal signal-to-noise ratio (SNR or ρ), a quantity that is specific to a detector:

ρ2 = 4ℜ
∫ ∞

0

df
|h̃(f)|2

Sn(f)
(1.21)

where Sn(f) is the Power Spectral Density (PSD) of the detector and ℜ denotes

taking the real part of the complex quantity 3. Since we are working with discrete

time series that is sampled at a frequency fs, this integral will be replaced with

a summation where ∆f = 1/T and the frequency representation of our data

will be limited by the Nyquist frequency fs/2. In considering multiple detectors,

we calculate instead the quadrature sum called the network SNR, which is the

root-sum-square of the SNR from the ith detector: ρnet =
√∑

i ρ
2
i .

1.2.3 Observing scenario and source catalogues

The scientists behind LIGO, Virgo and KAGRA detectors form a collaboration

(collectively called LVK Collaboration). They operate each detector and organize

joint data collection periods called “observing runs". As of the time of writing, the

LVK is in its fourth observing run (O4) where the range of distance to sources are

shown in Figure 1.2. It also shows the recently updated timeline for the observing

runs, including the detectors’ respective BNS detection ranges which is the average

distance to detect a binary neutron star (BNS) merger with a SNR of 8 [13].

For the past three observing runs, the LVK collaboration have reported about

90 candidates with high probability of astrophysical origin. These candidates are
2in this case stationarity refers to the unchanging properties between segments of time series.
3since the Fourier transform h̃(f) ≡ F [h(t)] is generally complex

9



1.3. GW sources and types

Figure 1.2: Observing scenario for the past three observing runs and the current
fourth observing run, plus some predictions on the fifth observing run. Taken
from https://dcc.ligo.org/LIGO-G2002127/public

sourced by compact binary coalescences (CBC) which are classified into binary

black hole (BBH) mergers, one binary neutron star (BNS) merger, and three

neutron star-black hole (NSBH) merger [16]. These successful detections were

catalogued in three separate instances which are built upon each other [17, 18].

The current observing run O4 is not expected to finish until June 2025 and the

next catalogue will be released in August 2025 for half O4 data (called O4a). In

O4 it is expected that the number of detected GW sources will increase reaching

up to ∼ 300 CBC sources. It is also expected that more types of sources will be

detected, including the fabled burst-type GW which will be discussed in the next

section.

1.3 GW sources and types

Gravitational waves can be classified into four types, depending on their

duration and the source. The well-known source and the only one observed so far

is the compact binary coalescence (CBC), which are the BBH, BNS, and NSBH

mergers mentioned earlier. The CBC source provides transient (short-lived) and

well-modeled (or well-approximated) GW. The continuous wave (CW) is a long-

duration GW that is also well-modeled, emitted by rotating neutron stars. The

long-duration unmodeled source is called the stochastic GW background (SGWB),

which could also provide information from the early universe. And lastly, the

transient unmodeled source is called burst GW, and it will be the focus of this

study.
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1.3. GW sources and types

1.3.1 Burst-type sources

Recall that a GW is produced by a change in quadrupolar moment of the

gravitational source. One particular type of GW that has been theorized but

not been discovered yet is the burst-type GW. These waves could be sourced by

differential rotation and/or explosion, both of which can realign the mass inertia

moments and provide a transient change in the quadrupolar moment of the source.

Burst GWs are characterized by the root-sum-square hrss of the amplitudes of

both polarizations [2, 19] which can be used to determine the energy output of

the source:

h2rss =

∫ ∞

−∞
dt (|h+(t)|2 + |h×(t)|2) (1.22)

= 2

∫ ∞

0

df (|h̃+(f)|2 + |h̃×(f)|2), (1.23)

where h̃ denotes the Fourier transform of the waveform polarizations. Since

they are short duration, they are well-localized in time and also well-localized

in frequency, which changes the integral limits further. Here we list down some

sources that have been theorized to produce burst GWs.

Core-collapse supernova

Perhaps the most studied source of burst-type GW, a stellar core collapse

happens for massive stars – those that have masses > 8M⊙ – at the end of their

life, when radiation pressure from nuclear fusion can no longer compensate the

inward gravitational pressure. The core contracts until it collapses in a fraction

of a second. This process can release burst-type GW through its asymmetric

(nonspherical) collapse or other mechanisms that might change the quadrupole

moment such as differential rotation. Numerical relativity simulations involving

nuclear physics predict the GW emissions of this process. The core-bounce part

of this core-collapse process [20] can be modeled using a single or combination of

sine-Gaussian wavelets [21].

Pulsar glitches and the Vela pulsar

A pulsar is a rapidly rotating, magnetized neutron star that emits beamed

electromagnetic radiation which are detected when the beam crosses the line of

sight of the detector (hence the name). The emission takes away energy from the
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1.3. GW sources and types

source, which causes it to slow down until the pulsar ‘turns off’ its pulsed beams.

However, these compact objects can experience sudden changes in rotational fre-

quency that can be caused by an internal reconfiguration of angular momentum

or energy distribution [22]. This event is called a glitch, and it can be observed

as irregular pulses within a rather regular periodic pulse emission. Glitches are

mostly observed in younger pulsars with higher spin-down rates, such as the Vela

pulsar (PSR B0833-45), Crab pulsar (PSR B0531+21), PSR J0537-6910, and PSR

B1737-30. However, the rate of these events happening is low and it varies from

one pulsar to another. These events can be seen in radio and high-energy EM

radiation, but there is also a chance to see a glitching millisecond pulsars inlcuded

in GW pulsar timing observations [23].

Pulsar glitches are events that could let us study the interiors of compact stars
4. Together with magnetar flares and gamma-ray bursts (GRB) these sources have

been hypothesized to produce GW bursts in the form of damped sinusoids that

can be manifestations of the excitation of the star’s fundamental oscillation modes

(known as f-modes) [24–27].

One particular glitching pulsar of interest is the Vela pulsar. Located in

the Vela constellation, it is well localized and well observed, having a rotational

period of about 0.089 seconds. In addition to precise sky location and distance

measurement, Chandra X-ray observations of the pulsar wind nebula torus provide

accurate determination of the orientation of the Vela spin axis [28]. The inclination

angle ι between the pulsar spin axis and the line of sight, as well as the polarization

angle ψ of the spin axis projection on the plane of the sky are derived from those

observations [29], although these values are undetermined within 180◦ as their

effects on the pulse strength only show as cosines. All parameters that are used

for our analysis are given in Table 1.1.

Right ascension (α) 128.3861 ◦

Declination (δ) -45.1764 ◦

Inclination angle (ιV ) 63.6 ± 0.6. ◦

Polarization angle (ψV ) 130.629◦.

Table 1.1: Some of the the Vela pulsar parameters that are used for the analysis
in Chapter 3. The sky location is obtained from the XMM-Newton catalog [30],
while the inclination and polarization angles can be derived from observations
made by Mignani et. al [29].

Since 1969 there have been 25 recorded Vela pulsar glitches every 2-3 years
4This field of study is called asteroseismology [24].
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1.4. Objective of the study

[31, 32]. Thanks to these observations there has been several models that could

be tested to explain the phenomenon, including a two-layer structure (crust and

core) [33]. Due to the frequency of its glitches, the Vela pulsar is also actively

studied for searches of GW bursts [34] and even continuous waves [35].

Cosmic strings

A cosmic string is a topological defect from cosmological phase transitions

that can produce gravitational waves. It is expected that the burst-type GWs

can come from string features called cusps and kinks [36–38], which come from

cosmic string loops that periodically oscillate. The expected frequency-domain

appearance of the GW emission for the string features are power laws, such that

h̃(f) ∝ h0f
−α where α is the power-law index with value α = −4/3 for a cosmic

string cusp and α = 5/3 for a cosmic string kink. There is also a high-frequency

cutoff term fhigh [39] that is related to the shape of the GW emission and string

tension. Just like the other burst-type GWs, they have not yet been observed, but

O3 searches have given us constraints on the models [37].

1.4 Objective of the study

Different searches for these GW burst signals have been conducted [40], but

so far no burst signal from any source has been detected. However when a burst-

type GW is detected, it will be important to characterize the source. Unlike CBC

searches (e.g. matched filtering [41]) where the nature of the source is known

a priori from the waveform, most of burst signals are poorly modelled. While

waveform predictions exist like the ones listed earlier, they are not precise enough

to be used in burst GW search pipelines which search for excess power with few

to no assumptions about the source [3].

In this thesis we use Bayesian inference to give statistically-supported state-

ments on the nature of a burst GW signal’s source. We develop a Bayesian

inference pipeline with the goal of comparing several possible GW burst models

(chapter 4). We assume that the strain (time-series) data can be represented by

well-defined models, which means we do not need to work with time-frequency

maps that are commonly used in burst GW search pipelines [20]. This study

of comparing waveforms has been done previously: In [38] they compared BBH

merger hypothesis with cosmic string loops and cusps hypotheses using Bayes fac-

tor as a figure-of-merit. However, on 29 April 2024 the Vela pulsar was reported to
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1.4. Objective of the study

glitch while LIGO and Virgo were acquiring data. It turns out that our Bayesian

inference pipeline could be easily adapted to search for a GW signal associated to

the Vela glitch (chapter 3).

Our pipeline uses the Bayes factor as a figure-of-merit, which has been used

extensively in GW Astronomy for model selection [42, 43] as well as detection

of glitches and burst signals [21]. We construct the pipeline with the help of

bilby[44] and gwpy[14] which are special python packages for Bayesian inference

and input/output of GW strain data, respectively. We focus on sampling the

parameters of the burst model’s GW signal morphology rather than the parameters

of specific physical models like equations-of-state (EOS).

In chapter 2 we provide the background for Bayesian inference methodology,

then we also construct the general pipeline used for the thesis. Then in chapter 3

we report our search for a GW signal associated with the Vela pulsar glitch last

29 April 2024 using our Bayesian inference pipeline. In chapter 4 we compare

different GW burst signal models and their detectability. We wrap up and discuss

future steps in Conclusions and Recommendations.
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Chapter 2

Bayesian statistics: Theory and
applications to GW Astronomy

Bayesian statistics is the framework in which GW astronomers are able to

understand and interpret their observations. It is through Bayesian statistics

that “events" turn into “confirmed detections" with physically meaningful proper-

ties. The scarcity of GW observations, the weakness of the GW signal compared

to noise, and the solid foundation of GW modelling all imply the suitability of

Bayesian statistics as compared to frequentist statistics. In this chapter, we follow

the theory of Bayesian statistics from the following references: [42, 45, 46]. We

start with Bayes’ theorem which is the basis of all of Bayesian inference, then we

explore its application on parameter estimation and model selection – two statis-

tical inference methods commonly used in GW Astronomy. We close the chapter

by outlining the Bayesian inference pipeline that is used for the next two chapters.

2.1 Brief introduction to Bayesian statistics

The entirety of Bayesian formalism stems from the definition of joint probabil-

ity for P (D∩θ|M), otherwise known as the probability of obtaining both the data

D and (a set of) parameters θ, and the definitions of symmetry for probability:

P (D|θ,M)P (θ|M) = P (D ∩ θ|M) = P (D|M)P (θ|D,M) (2.1)

L(θ)π(θ) = P (D ∩ θ|M) = ZP (θ). (2.2)

Here P (D|θ,M) is the probability of obtaining data given a set of parameters θ

and underlying model M , P (θ|M) is the probability of obtaining the parameters

given the model, P (D|M) is the probability of obtaining the data based on the

marginalized probability of all parameters, and P (θ|D,M) is the probability of
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2.1. Brief introduction to Bayesian statistics

obtaining a set of parameters given some data and an underlying model. In the

context of Bayesian statistical inference, these terms are respectively called the

likelihood L(θ), prior π(θ), evidence or marginalized likelihood Z, and posterior

distribution P (θ).

This equivalence in joint probability definitions allows us to write Bayes’ the-

orem in the context of statistical inference as

P (θ) =
L(θ)π(θ)

Z
(2.3)

from which we can infer that Z ≡
∫
L(θ)π(θ)dθ since probability distributions

should be normalized. It is important to note that Eq. (2.3) is written with an

underlying model in mind – later on we will see how this plays a role in model

selection. The next two sections focus on the two main Bayesian inference methods

we use in this thesis: parameter estimation and model selection.

2.1.1 Stochastic sampling using Nested Sampling

In Bayesian statistics, the uncertainty of the estimated parameters is included

within the posterior distribution. However, estimating the posterior, through

the estimation of the likelihood poses a challenge especially in the computational

sense. It is not exactly known how the data should look like given some parameters,

especially when we are considering approximants. For each parameter, we consider

multiple values within the chosen prior range, and the more parameters we try to

infer, the more difficult the estimation becomes. This is where stochastic sampling

comes in handy.

Stochastic sampling is characterized by the use of random walkers (known

as samplers) that explore the parameter spaces. Their randomness is encoded

in their jump/transition proposal, which is defined by the probability to change

steps according to some rules. Stochastic samplers are generally classified into

two: on one hand, the Markov Chain Monte Carlo (MCMC) methods directly

generate samples from the posterior (up to a multiplicative factor) with the jump

probability usually attributed to Metropolis and Hastings [47], while on the other

hand Nested Sampling divides the parameter space into iso-likelihood spaces and

lets the random walkers sample from these smaller spaces, building the posterior

in a “nested" manner by setting the transition probability to depend on the lowest

value of calculated likelihood. In this thesis, we use Nested Sampling as a means

of estimating the parameters.
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2.1. Brief introduction to Bayesian statistics

Originally, Nested sampling was intended to solve the evidence integral (which

we recall here)

Z =

∫
dθ L(θ)π(θ) (2.4)

by redefining the integral as a function of the prior volume X,

X(λ) =

∫
Ωθ:L(θ)≥λ

π(θ) dθ (2.5)

which is in turn a function of λ, the threshold minimum value for the iso-likelihood

contour L(θ). This transforms the evidence to

Z =

∫ 1

0

L(X)dX (2.6)

where the limits naturally appear as the normalization condition on X, with

the total prior volume being X = 1. The jump proposal is then given by the

omission of the random sampler that is within the iso-contour of the lowest value

of L(X) (labeled λ). This makes the samplers proceed by eliminating the walker

living on the lowest iso-likelihood contour and replacing it with a walker living

on a randomly chosen higher iso-likelihood contour, thereby decreasing the prior

volume and moving on to higher likelihood regions.

As compared to MCMC samplers whose stopping criterion is arbitrary, Nested

Sampling also provides a natural stopping criterion by considering an estimated

upper limit for the evidence at each iteration: the likelihood of the remaining

prior volume is assumed to be the highest likelihood of the live points. This

can be translated to a difference of evidences per iteration, given by ∆ lnZi =

ln(Zi +∆Zi)− lnZi < ε for some small ε 1. As a by-product, Nested Sampling is

also able to build up the posterior P (θ) ∝ L(θ)π(θ) ≈ L(θ)X(π(θ)) by using the

importance weights.

There are several implementations of Nested Sampling in Python. For our

purposes, dynesty [48] suffices, thanks to its modular nature and the ability to

switch between “static" and “dynamic" nested sampling, depending on the priority

of the user to calculate either the evidence or posterior.
1In dynesty[48], this ε is specified as a keyword argument dlogz
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2.2. Parameter estimation in the context of GW Astronomy

2.2 Parameter estimation in the context of GW
Astronomy

Since GW signal amplitudes scale as G/c4 ∼ 10−44, the signals can be easily

buried in the noise. We assume that the signal is linearly added onto the noise,

such that the total strain data output of the detector is s(t) = n(t)+h(t), where h

is the astrophysical GW signal and n is the sum of all noise sources. This is akin to

the ‘null’ and ‘alternative’ hypothesis scenarios in ‘frequentist’ statistics, where the

‘null’ hypothesis asserts that there is only noise, h(t) = n(t), while the ‘alternative’

hypothesis asserts that there is a signal added to the noise, h(t) = n(t) + s(t).

Using Bayesian statistics, we can infer the parameters (of an underlying model)

given the “likelihood" of the data being produced from those parameters and

our belief on how the parameters are distributed (“prior"). In GW astronomy,

the combination of several random noises in the data is assumed to produce a

probability distribution that is Gaussian 2. Hence we use the Gaussian likelihood

L(d|θ;µ, σ) = 1√
2πσ2

exp

(
−1

2

(d− µ(θ))2

σ2

)
(2.7)

where µ and σ2 are the mean and variance of the Gaussian distribution. For

continuous GW data, this means µ is a template built on several parameters θ.

As discussed in Chapter 1, the strain data is usually a discrete, finite time series

with a specific duration T sampling rate fs. The likelihood can then be rewritten

as a function of a single frequency bin j with size ∆f (using the notation in [42])

as

L(dj|θ) =
1

2π(PSD)j
exp

(
−2∆f

|dj − µj(θ)|2

(PSD)j

)
(2.8)

where PSD is the (one-sided) noise power spectral density defined in Chapter

1. Thus we need to convert both the time series d and template µ to the frequency

domain (see [15]), which gives the additional 2∆f factor in the exponential. Then

we can multiply each likelihood computed from all frequency bins to get the

total. This multiplicativity also applies to the likelihoods obtained from different

detectors.
2There are specific instances of non-Gaussianity in the form of glitches, but this is beyond the

scope of this thesis.
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2.3. Model selection using Bayes factors

In practice, likelihoods can get extremely big or extremely small. Instead it

is easier to work with the log-likelihood; not only does it take care of extreme

magnitudes, it also converts any multiplication to a summation, making the total

log-likelihood easier to calculate. The total log-likelihood is given by

logL(d|θ) =
∑
j

logL(dj|θ) = −1

2

∑
j

log(2π(PSD)j)− 2∆f
∑
j

(dj − µj)
2

(PSD)j
.

(2.9)

The other quantity we need to specify for Eq. (2.3) is the prior, π(θ). The prior

distribution takes into account the belief on the distribution of the parameters be-

fore any evidence is considered. Priors can range from uninformative to informa-

tive, depending on the modeler’s beliefs on the distribution of the parameters. In

this thesis, we use uninformative or flat priors to reflect the indifference of a GW

burst detection to any model. An example is the Uniform prior, π(θ) ∼ Unif(a, b),

where the parameter θ has equal chances of being any value within the range θ = a

to θ = b. Another example is the Log-Uniform prior which is used when there is

no a priori information about the magnitude of the parameter [42].

2.3 Model selection using Bayes factors

Now that the posterior distribution of parameters is taken cared by Nested

sampling, our next focus is on model selection. Recall that in building Eq. (2.3),

there was an assumption that the parameters belong to a certain model. An

example of a model could be the existence of the signal within the data, for which

an evidence ZS and priors for its parameters πS can be calculated. Changing

this model will allow us to define different evidences from different sets of priors.

For example, the other model could be the ‘noise model’ where the signal is not

present in the data, with an entirely different evidence ZN ≡ L(d|θ = 0) 3. We

can then compare two models (generally denoted by A and B) by using the odds

ratio,

OA
B =

ZA

ZB

πA
πB

(2.10)

3In this case, we can set the priors to be the same as the signal model, but in general the priors
could be different.
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2.4. Burst GW inference pipeline development using bilby

where the second term consists of the prior odds which describes the degree of

belief about the relative likelihood of the two models, while the first term is called

the “Bayes factor", which compares the evidences (or marginalized likelihoods)

of the two models. The (natural log of the) Bayes factor can be calculated as:

[42, 49]

ln BFA/B = ln

(
ZA

ZB

)
= lnZA − lnZB (2.11)

For our purposes, we use Jeffrey’s definition [50] for a significant decision: if

| lnBF | ≥ 8 then one model is definitively preferred by the data, with the sign of

lnBF telling us which model is preferred [42].

2.4 Burst GW inference pipeline development
using bilby

In this thesis, our primary methodology consists of comparing “models" by

calculating the Bayes factors for several scenarios. The first one can be a detection

scenario: the ‘signal model’ is a model for which the astrophysical GW signal

is present in the data, versus the ‘noise model’ where the data contains only

noise [42]. The other scenarios are comparisons of disparate signal models, e.g.

comparing a damped sinusoid signal (from a magnetar/pulsar glitch) against a

power-law signal (from cosmic string cusps/kinks) or against sine-Gaussian signals.

In all cases, the evidence or marginal likelihood is a necessary calculation, which

prompts us to develop a pipeline based on Nested Sampling.

There are several parameter estimation softwares used and developed by the

LVK collaboration; one of these is called bilby, a Bayesian inference library [44].

As a modular package, bilby can do several things: (1) load real GW data or even

create synthetic ones from specific GW interferometers, (2) wrap and call different

stochastic samplers like dynesty, (3) calculate and provide several likelihoods and

priors (such as Eq. (2.9) which is implemented internally), and most importantly,

(4) allow the user to create their own objects that can be used for Bayesian

inference.

We describe our Bayesian inference pipeline developed with bilby. The input

for the pipeline is either simulated or real GW strain data and the primary output

is the Bayes factor for a given scenario. In the “detection scenario" described

earlier, the pipeline will calculate a (log) Bayes factor that compares the “signal
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2.4. Burst GW inference pipeline development using bilby

model" and the “noise model" (hereby labeled lnBFS/N). For the signal model

comparison scenario, the pipeline will calculate a Bayes factor that compares signal

model A to signal model B (labeled lnBFA/B). The pipeline will also output the

posterior distributions of the sampled parameters that are user-specified.

To test the performance of this pipeline we inject burst-type GW signals to

either simulated or real data. The process follows a generic form which can be

summarized as follows:

1. Construct the GW burst signals’ waveform polarizations h+ and h×, then

feed this into a WaveformGenerator object inside bilby.

2. For simulated Gaussian data, load the ASD files as a FrequencySeries from

the gwpy package. bilby will process this ASD and create a noise realization

from it. For real data, fetch the data (with the correct frames) using gwpy’s

TimeSeries.get from the appropriate detector channels. Both simulated

and real data are preprocessed and loaded onto bilby’s Interferometer

objects. An example of GW strain is shown as a time series in Figure 2.1.

3. Inject the waveform polarizations to the Interferometer’s strain data (which

we call the “fake on-source window" in Figure 2.1) by adding the detector-

frame frequency-domain waveform h̃(f) 4 onto the frequency-domain strain

data s̃(f).

4. Construct the log likelihood, Eq. (2.9) by using bilby’s likelihood ob-

ject GravitationalWaveTransient, which accepts the Interferometer (for

(PSD)j) and WaveformGenerator (for constructing multiple µ(θ))

5. Construct the prior for each parameter to be sampled using bilby’s Pri-

orDict, which is a python dictionary containing prior objects from Prior

objects

6. Launch the sampler by using bilby’s run_sampler method where the user

will specify the Likelihood and Prior objects and the chosen sampler with its

corresponding settings. This will return a JSON file that contains informa-

tion about the posterior distribution of the sampled parameters, noise and

signal evidence, the signal-to-noise Bayes factor, the injected parameters,

likelihood and importance weights, etc.
4Derived from Eq. (1.19) using a Fast Fourier Transform (FFT)
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An example python code that implements the steps above is shown on Appendix

A. This pipeline can adapt to different GW signals we want to test.

Figure 2.1: An example of the LIGO Hanford (blue), LIGO Livingston (red), and
Virgo (green) GW strain time series. The “fake on-source window" refers to the
chunk of data where waveform injections are done.

To evaluate the sampling results, one can check the ‘trace plots’ of a stochas-

tic sampler. This plot shows how the samplers explored the parameter space

over time, and whether convergence to a certain value/distribution was achieved.

Since we are using dynesty’s (static) Nested Sampling, the exploration over time

is shown as the sampler’s progression with the decrease in prior volume. We

can also evaluate the performance of the sampler by visualizing the posterior

distributions themselves. This is usually shown as a ‘corner plot’, where the one-

dimensional marginalized posterior distributions are shown in the diagonals and

the two-dimensional marginalized posterior distributions (containing combinations

of different parameters) are shown in the off-diagonals.

In the process of stochastic sampling, the goal is to recover the injected wave-

form within the error estimates given by the posterior distribution of the input

parameters. We can visualize this goal by obtaining the posterior samples (or

even just a subset) from the results’ JSON file, reconstructing the waveform for

each of these parameter sets, and calculating the error bounds for each point in
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2.4. Burst GW inference pipeline development using bilby

time/frequency from the waveform. For example, if we want to calculate the 2σ

waveform errors, we need to calculate the 5th and 95th percentile values at each

point in time/frequency for all the reconstructed waveforms. We can then visual-

ize both the error ranges of the possible waveform reconstructions and embed the

injected waveform.

Another waveform reconstruction quality measurement is given by the mean

absolute error [51],

MAE =
1

n

n∑
i=0

|hi(t)− ĥi(t)| (2.12)

where i is the individual timesteps, hi is the injected waveform, ĥi is the maximum

likelihood estimate (MLE), and n is the total number of waveform points.
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Chapter 3

Application of the Bayesian
inference pipeline on the Vela
pulsar glitch of 2024 April 29

In this chapter we apply the bilby-based inference pipeline described in

section 2.4 to LIGO-Virgo data collected during the recent Vela pulsar glitch event

that occured on April 2024 (first reported in Astronomer’s telegram [52, 53]).

As a disclaimer, the strain data used in this thesis does not involve the data

corresponding to the glitch event itself but the data surrounding the event. The

pipeline we introduced can be adapted to a detection scenario where we model the

data (assuming a given signal exists) and calculate its corresponding Bayes factor

lnBFS/N . This “Bayesian search" for a GW signal is conducted using the O4 data

recorded by the two LIGO and Virgo interferometers. We first summarize of the

event’s properties, then we outline the steps taken in conducting what is known as

a “closed-box analysis". We also explain how such analysis prepares GW scientists

for a real signal search.

3.1 The Vela pulsar glitch of 2024 April 29

The most recent glitch of the Vela pulsar was first reported by the PuMA

Collaboration using the two 30m antennas of the Argentine Institute of Radio

astronomy [53]. The glitch was detected by tracking the residuals of the pulsar

timing, where the residuals are obtained from fitting a timing solution. This

timing solution is a model of the previous pulses received at regular time intervals.

They took into account the data recorded before the epoch (there reported as

between MJD 60428.96 or 28 April 2024 23h UTC and MJD 60431.84 or 1 May

2024 20h UTC). The reported relative change in pulsar rotation frequency F0 is
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3.2. Methods

dF0

F0

= 2.3× 10−6 (3.1)

Other observations have been reported and the glitch’s epoch uncertainty is

reduced to MJD ±3.84691 × 10−5, centered around MJD 60429.869615 (29 April

2024 20:52 UTC). This uncertainty of ±3 [s] allows us to define a short-duration

on-source window (OSW) which makes the event a perfect candidate for Bayesian

data analysis. Considering the Vela pulsar’s distance of 293 parsecs, we hope to

find a corresponding GW signal.

Figure 3.1: BNS range as function of time on April 29th 2024 for the LIGO
Hanford (red), LIGO Livingston (blue) and Virgo (purple) detectors.

3.2 Methods

How loud should a burst GW signal be in order for us to “hear" it within the

noise? In this chapter, we aim to answer this question by applying the Bayesian

inference pipeline on real data surrounding the time of the Vela pulsar glitch event.

We assume that this GW emission can be modeled by a damped sinusoid [25, 26],

then we adapt our Bayesian pipeline to compare two models: one where a damped

sine exists in the data and another where the data is purely noise.

3.2.1 Modelling the GW emission from a Vela pulsar glitch

The transient nature of the pulsar glitch suggests that a burst-type GW could

be released 1. In this thesis, we consider the GW emission of a pulsar glitch as an
1Although we assume that a burst GW is released, efforts have been made to search for

continuous gravitational waves from pulsar glitches. These searches use pipelines such as cwinpy
[35].
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excitation of fundamental modes (f-modes) that we model using an exponentially

damped sinusoid [25]. The GW propagates from the Vela pulsar to the Earth such

that the two polarization amplitudes depend on the inclination angle ι between

the source’s spin axis and the line of sight, 2

h+(t) =
1 + cos2 ι

2
Θ(t− t0) h0 e

−(t−t0)/τ cos(2πf0t+ φ0)

h×(t) = cos ι Θ(t− t0) h0 e
−(t−t0)/τ sin(2πf0t+ φ0).

(3.2)

Here Θ(t− t0) is an Heaviside step function which defines the time t0 at which the

GW amplitude h0 is maximum. Aside from the amplitude, the other intrinsic GW

parameters are the characteristic frequency f0, and the damping time τ which con-

trols how fast the wave loses energy (related to the rate at which the pulsar comes

back to its regular spin-down rate). Furthermore, the GW emission is assumed to

be well-localized in the sky, such that its source position is constant throughout

the emission duration. This allows us to use the sky location, inclination, and

polarization angles listed in Table 1.1 3.

Figure 3.2: The f-mode GW polarizations h+ and h× as written in Eq. (3.2). In
this example h0 = 2.5 × 10−21, τ = 0.5 s, f0 = 1.6 kHz, and t0 = 1398459500.25
GPS time.

Fig. 3.2 shows an example of h+ and h× polarizations as function of time.

To avoid spectral leakage effect when we go from time to frequency domain, we

redefine Θ(t− t0) and apply a half-Tukey window with a shape parameter α that
2This emission is assumed to be dominated by the fundamental ℓ = |m| = 2 GW mode.
3We also assume that the phase at the time of arrival φ0 is zero.
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depends on the characteristic frequency f0 of the damped sinusoid 4. On the left

panel of Figure 3.3, the half-Tukey window is represented and the right panel

shows how the window modulates the time series amplitudes.

Figure 3.3: Left: the half-Tukey and full Tukey windows are compared. Right:
Comparing the half-Tukey window with the unwindowed damped sinusoid wave-
forms.

There are several models that explain how excitation of the f-modes generate

burst-type GWs. In this thesis, we use the empirical formulas from [24, 27] that

limit the range of f0 and τ :

f0(kHz) ≈ 0.22 + 2.16

(
M/(10M⊙)

R/(10km)

)1/2

1

τ(s)
≈

(
(M/(10M⊙))

3

(R/(10km))4

)[
22.85− 14.65

(
M/(10M⊙)

R/(10km)

)] (3.3)

Using these formulas and assuming a neutron star mass and radius range of

M ∈ [0.8, 2.5] M⊙ and R ∈ [8, 20] km, as well as considering both f0 and τ to be

positive and sensible such that the damping time does not last too long, the range

of f0 and τ is limited to

f0 ∈ [0.797, 4.25] kHz

τ ∈ [0.087, 10] s
(3.4)

These limits provide the range to be used for our uniform prior beliefs.

We can also find a suitable range for our amplitude prior. From Eq. (1.13),

we convert the emitted GW energy density per unit time to a spectral energy
4Spectral leakage happens when box window are used in time domain analysis (time series are

always finite) as the Fourier transform of a box window is sin(f)/f . The power spectral density of
a box windowed time series scales as f−2 [5].
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density (SED), given as the energy density per unit frequency. Since we are

dealing with a transient source that is well-localized in time and frequency, we can

calculate the SED by averaging the flux Eq. (1.13) over one period T (assuming

the burst signal’s duration ≤ T ) and converting the squared time derivatives

using (−ı2π)2f 2|h(f)|2. Together with Parseval’s theorem and the definition for

differential solid angle, the time-averaged spectral flux density is given at the

quadrupolar approximation by [19]

FGW =
d2EGW

dAdt
=
πc3

4G

1

T

∫ ∞

−∞
dff 2(|h̃+(f)|2 + |h̃×(f)|2) (3.5)

To obtain the total GW energy emitted by the source we need to integrate this

averaged flux over a sphere of radius r which is the distance to the source. Since

the inclination angle ιV is known for the Vela pulsar, we do not receive this total

energy so we cannot integrate over the whole area of the sphere. Instead we

factorize the ι terms of Eq. 3.2 to obtain

EGW =
πc3

4G

∫
dA

∫
df f 2(|h̃+(f)|2 + |h̃×(f)|2)

=
πc3

4G
r2

(
(1 + cos2 ιV )

2

4
+ cos2 ιV

)
∫ 1

−1

d cos ι

∫ 2π

0

dϕ

∫ ∞

−∞
df f 2(|h̃+(f)|2 + |h̃×(f)|2)

= κ
π2c3

G
r2

∫ ∞

−∞
df f 2(|h̃+(f)|2 + |h̃×(f)|2)

(3.6)

where κ ≡
(
(1 + cos2 ιV )

2

4
+ cos2 ιV

)
. Considering ιV=63.30 ◦, we have κ =

0.5630. Using a monochromatic signal (i.e. dominated by one frequency f0) and

a definition for the optimally-oriented (ι = 0) source hrss from Eq. (1.23), Eq. 3.6

becomes

EGW = κ
π2c3

G
r2f0h

2
rss (3.7)

which is about half the energy released of a narrowband isotropic emission [19].

We can relate this description of energy to the peak amplitude h0 [26]:

h0 =
1

πdLf0

(
5G

c3
EGW

τ

)1/2

(3.8)
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which takes into account the (luminosity) distance to the source dL and gives us

a range of estimates for the peak amplitude h0, assuming that the glitch energy is

entirely carried away by the GW emission.

3.2.2 Pipeline and data description

The Bayesian inference pipeline described in Section 2.4 allows us to statisti-

cally compare two models. It also recovers the parameters of a model waveform.

To quantify the performance of its parameter estimation capabilities, we simulate

various damped sinusoid signals and inject them to GW strain data. Referring to

Figure 2.1, the injection is done inside bilby and can be summarized as follows:

(1) after the time-domain waveform function is constructed, its frequency-domain

(FD) equivalent is calculated using a Fast Fourier transform (FFT); (2) The

projection of this FD waveform to the interferometer is calculated, then (3) the

projected FD waveform is added onto the FFT of a “fake" on-source window.

This fake OSW allows us to perform a “blind search" which consists of tuning and

testing the search efficiency without being biased by the presence of a genuine

GW signal in the OSW. The fake OSW is chosen not too far away from the real

OSW (see Figure 2.1 where the data for the fake OSW is highlighted in gray).

The fake OSW is used by bilby as the data d in the log-likelihood calculations

of Eq. (2.9). Furthermore, the template µ described in Eq. (2.9) is the projected

FD waveform with parameters sampled from the prior distributions. This shows

how the log-likelihood weighs the different waveforms that can be made from the

parameters space, such that the waveform with the maximum likelihood pertains

to the waveform with parameters close to the injected one (at best, it is exactly

the injected one).

As a test, we first inject the damped sinusoid waveform on simulated Gaussian

noise data before applying the pipeline to real LIGO-Virgo O4 data. To obtain

simulated Gaussian noise, bilby generates a random Gaussian noise realization

by respecting the design sensitivity amplitude spectral density (ASD) [13] and

creating a time series from a specified duration and sampling frequency. The noise

ASD to be used is exactly the one showed in Figure 1.1.

To obtain real LIGO-Virgo O4 data, we need to fetch the GW strain time

series from the calibrated strain channels of each detector which sample at 16384

Hz, having a Nyquist frequency of 8192 Hz 5. We fetch three sets of time series
5In LVK nomenclature, the detectors are named “H1" for the LIGO-Hanford detector, “L1" for
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from three detectors; one set of 4-second data serves as the fake OSW, another

128-second time series serves as the off-source window (labeled as “background" in

Figure 2.1) from which the noise ASD will be estimated. The third 6-second time

series fetched is the “real" OSW (which is about 20 minutes after the fake OSW in

Figure 2.1) as this corresponds to the data surrounding and including the trigger

time that might possibly contain the real burst GW. This real OSW data will be

used once we have fully tuned the search.

The following pre-processing procedures are applied to the fetched O4 data: we

apply a (full) Tukey window over the whole 132-second time series and resample

it to 8192 Hz to gain a Nyquist frequency of 4096 Hz. The O4 noise ASD is then

calculated from the 128-second background data by applying a Fourier transform

on the autocorrelation of each data point (assuming stationarity). For each 4-

second interval in this 128-second strain, a Tukey window is also applied. The

intervals are overlapped with each other with a total of 0.4 seconds per overlap,

then the final ASD is averaged from all the 4-second ASDs using Welch’s method

[5].

In this chapter, we consider two injection sets. One set consists of 40 damped

sinusoid waveforms where the amplitude varies within the range h0 ∈ [10−23, 10−20]

with all other injected parameters kept constant: frequency f0 = 2.7 [kHz], damp-

ing time τ = 0.5 [s], and geocentric arrival time t0 = 0.25 seconds after the fake

OSW start. To check the frequency dependence, another set of 40 injections are

made, varying both the injected amplitude (same range as before) and frequency

f0 ∈ [0.9, 4.2] [kHz]. We inject both sets onto simulated and O4 data and recover

the parameters plus signal and noise evidences for each.

3.2.3 Sampling and parameters’ priors

The pipeline samples the parameters of a generic signal that can come from

a real GW source or an injected simulated signal. In this chapter, we adapt the

pipeline such that we sample the parameters of the damped sinusoid injections.

We assume that the damped sinusoid model does not refer to any equations-of-

state (EOS) that relates the mass and radius of the neutron star, but rather,

we focus on sampling the phenomenological parameters {h0, τ, f0, t0}. Here we

assume the time t0 to be the time of arrival of the maximum amplitude h0 at the

center of the earth (i.e. the geocentric time).

the LIGO-Livingston detector, and “V1" for the Virgo detctor.
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To complete the Bayesian sampler, we specify the likelihood and prior distribu-

tions. The multi-dimensional likelihood is given by Eq. (2.9), which is calculated

for each of our parameters θ = {h0, τ, f0, t0}. We also specify un-informative

priors since we want to generalize our model as much as possible (albeit the con-

straints on the possible amplitude, frequency, and damping times). The priors are

given as follows:

• Amplitude h0: Log-uniform from 10−24 to 10−19.

• Damping time τ : Uniform from 0.087 to 10 s.

• Frequency f0: Uniform from 792 to 4250Hz.

• Geocentric time of arrival t0: Uniform on the whole fake OSW.

The extrinsic parameters — those listed in Table 1.1 and the extra phase φ = 0

— are assumed by bilby to be constant throughout the sampling process. They

are stored inside bilby as a DeltaFunction prior object. We also make sure

that the injected waveforms’ parameters are contained within the prior, else the

sampler would not be able to recover the correct parameters properly.

We use bilby’s dynesty wrapper to facilitate the sampling process. This

sampler can be specified further by using keyword arguments that control how

the sampler behaves. For all runs in this thesis, we use the same parameters:

Number of initial live points nlive=1000, stopping criterion dlogz=0.1, sampling

method sample="acceptance-walk" (sets all MCMC chains to the same length),

and Poisson distribution mean naccept=60 for the number of accepted steps. [54]

bilby calculates the noise evidence ZN ≡ L(d|θ = 0) even before it starts to

sample. In this chapter, the noise (log) evidence will be compared with the signal

evidence,

ZS =

∫
dθ L(d|θ)π(θ) (3.9)

where the integral is carried over the whole parameter space spanned by our

prior. Using the signal-to-noise (log) Bayes factor,

BFS/N =
ZS

ZN

(3.10)

lnBFS/N = lnZS − lnZN . (3.11)
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This quantity will be the criterion we consider to assess the search sensitivity

to a signal, to test if the data prefers the model that “the signal is present".

3.3 Results

To show the pipeline’s performance, we check the results for a particular

simulated data injection, with the injected damped sine’s parameters h0 = 1 ×
10−20, τ = 0.5 s, f0 = 2.7 kHz. The sampler for this particular run produced

lnBFS/N≈ 21772 which is really above the threshold value of 8. The pipeline

tells us that the data containing this high amplitude injection strongly prefers the

model with the signal present. Figure 3.4 shows the posterior distributions for this

particular injection. In this figure, we see that the one-dimensional marginalized

distributions follow the Gaussian likelihood of Eq. (2.7), which means the sampler

has succeeded in finding a good estimate of the (injected) parameters. Indeed, the

maximum likelihood estimates (MLE, given on top of the corner plots) are very

close to the injected parameters. We also notice the presence of a degeneracy,

given by the shape of the two-dimensional distribution between h0 and τ . This

means there is some dependence between the two parameters, which is expected

since they both affect the amplitude of the signal and not the phase.

We can further assess the sampler’s convergence by checking the trace plot,

which gives a rough idea of how the live points explore the parameter space. Figure

3.5 shows the trace plot for the same run whose corner plot is shown in Figure

3.4. We notice the behavior of the points as they converge to certain values in the

parameter space. The final points are then collected to obtain the posterior.

3.3.1 Simulated Gaussian noise data analysis

In this section we summarize the results of the pipeline that sampled from

simulated Gaussian noise data. For the set of injections that varied amplitude and

kept the rest of the parameters constant, we sample all parameters and compute

lnBFS/N of each injection run. Figure 3.6 shows a plot of lnBFS/N as a function

of the injected amplitude, where each injection and sampling run corresponds to

one point.

We find that there’s a certain amplitude where the log Bayes Factor starts to

become positive and greater than the threshold for strong evidence lnBFS/N= 8,

which means that from this amplitude upwards, the data prefers the signal model.
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Figure 3.4: Corner plot of the damped sinusoid parameters’ posterior distributions
for a damped sinusoid signal with parameters h0 = 1 × 10−20, τ = 0.5 s, f0 =
2.7 kHz added to simulated data of the LIGO Hanford, LIGO Livingston and
Virgo detectors (at their design sensitivity).

Conversely, below this amplitude threshold all log Bayes Factor values are negative

and have almost the same value, which means the data prefers the noise model

no matter which amplitude we inject. The sampler says that the injected signals

will be buried in the noise and it prefers that the data is described by a noise-only

model. For injections onto simulated data, this amplitude threshold is between

3.455× 10−22 (with a corresponding lnBFS/N ≈ 0.95) and 4.125× 10−22 (with a

corresponding lnBFS/N ≈ 10); we label this amplitude h0,t ∼ 4× 10−22.

Figure 3.7 shows the injected waveform with amplitude h0 = 10−20, superim-

posed with the results of the sampler with lnBFS/N ≈ 21772. The maximum
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Figure 3.5: Trace plot of the sampler whose corner plot is shown in Figure 3.4. The
left column shows the “live points" that roam the prior space as the prior volume
lnX decreases. The right column shows the final one-dimensional marginalized
distributions of each parameter

likelihood estimate (MLE) from the sampler leads to a faithful reconstruction of

the injected signal; both the injected and MLE signals are well within the 2σ

point-wise estimate of waveform values (sampled from the posterior distributions

in Figure 3.4). The green areas (called the credible interval) show the possible

values of the waveform estimates derived from the posterior. The injected am-

plitude here is way above the amplitude threshold h0,t set earlier. The injected

signal is loud enough so that the sampler can recover its parameters properly,

which reflects the corresponding corner plot in Figure 3.4.

On the other hand, the reconstructed waveform of the injection run with

h0 = 3.455 × 10−22 and lnBFS/N = 0.9500 is compared to the injected waveform

in Figure 3.8. We see that even if the lnBFS/N value is positive, the maximum

likelihood waveform does not entirely match the injected waveform. Even then,

both these waveforms are well within the point-wise 90% credible interval. The

sampler says that the data prefers the signal model, but the preference is not

strong i.e. there is not enough evidence to prove that a signal really exists within

the data.
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Figure 3.6: The signal-to-noise Bayes factor lnBFS/N as a function of the damped
sinusoid signal amplitude injected onto simulated data. For lnBFS/N > 0, the
data prefers the signal model, s(t) = n(t) + h(t), while negative lnBFS/N means
that the data prefers the noise-only model, s(t) = n(t).

It is also interesting to track the log Bayes Factor with respect to the root-sum-

square amplitude hrss and signal-to-noise ratio (SNR) – quantities that are directly

related to the energy output and detectors’ sensitivity, respectively. Figure 3.9

shows this trend. The color bar corresponds to the value of lnBFS/N , where the

colors diverge from the central value of lnBFS/N = 8 (the threshold value for

which the signal model is “strongly preferred" over the noise model). We see that

for hrss > 10−22 and about SNR > 8 the data starts to prefer the signal model. As

a reference, the previous calculations on magnetar f -mode parameter estimation

in simulated data quote hrss ≈ 3× 10−23 as the threshold for damped sine signals

to have lnBFS/N > 8 at a SNR = 8 [27].

Another test we can carry out is to vary the injected signal frequency aside from

the amplitude. We develop another set of injections that uses the same amplitude

range as the runs before, while the frequency for each injection is drawn from a

uniform distribution that ranges from 0.8 to 3.9 kHz. We run the same injection

and sampling procedures outlined in Section 2.4 and recover lnBFS/N for each run.

Figure 3.10 shows how the log Bayes Factor changes with respect to the injected
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Figure 3.7: Reconstructed 90% credible interval for an injected damped sinusoid
waveform with h0 = 10−20 and lnBFS/N ≈ 21772, together with the injected and
maximum likelihood waveforms.

Figure 3.8: Left: Reconstructed 90% credible interval for an injected damped
sinusoid waveform with h0 = 3.45× 10−22 and lnBFS/N ≈ 0.95 together with the
injected and MLE waveforms. Right: A zoom-in of the figure on the left.

amplitude and frequency. We see that there is a slight frequency dependence for

lnBFS/N when the amplitude is kept constant. This dependence is due to the

effect of the noise PSD. In Figure 1.1 we see that the amplitude of the noise curve

increases with frequency. This means that when we add a monochromatic signal

with an ever-increasing frequency and keeping the amplitude constant, the signal

is more and more buried in the noise, with a SNR decreasing as the
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Figure 3.9: Network SNR and lnBFS/N as a function of the (Vela-oriented) hrss
of the injected signal. The red points correspond to runs with lnBFS/N > 8

3.3.2 LIGO-Virgo O4 data analysis

Now that our pipeline is fully characterized with simulated Gaussian noise,

we can turn to LIGO-Virgo O4 data. In this section, we label the analysis as

‘closed-box’ as we inject the waveforms on a fake OSW (recall the gray datapoints

in Figure 2.1) which is a segment of real data having the same duration as the

simulated data but taken a few minutes before the OSW start. The practice in

LVK collaboration is that scientists do not “open" the box (the data from real

OSW that potentially contains a GW signal) until closed-box results have been

confirmed and verified. 6

To see the difference between simulated Gaussian and real GW strain data, a

comparison between their ASDs is shown in Figure 3.11. Indeed, the real data

ASD contains more noise sources than the design sensitivity curves. These noise

sources show up as vertical lines in the ASD that correspond to different types of

resonances of the detectors. For instance, the lines around 1000 Hz correspond to
6This means that the data used for this analysis does not involve the GW strain data data

corresponding to the time of the event.
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Figure 3.10: Another set of injection runs where both the injected amplitude and
frequency varies for each run. The colors of lnBFS/N diverge from the threshold
value lnBFS/N = 8, with red points indicating a strong preference for the existing
signal model.

the violin oscillation modes of the arm mirrors. It is also interesting to note that

the Virgo data has a limited sensitivity with respect to the LIGO data; its ASD

is also higher than the expected design sensitivity. For this reason we perform the

injection and sampling only on LIGO H1 and L1 data.

As in the study with simulated data, we inject several damped sinusoid wave-

forms of varying amplitudes to the fake OSW of the LIGO O4 data, then we

recover the posterior and lnBFS/N and establish a lower bound from which the

data strongly prefers the injected signal model. Initially, a set of 100 injections

of varying amplitude (h0 ∈ [10−23, 3 × 10−21]) was sampled using the same prior

ranges and injection parameters (except for f0 which is now 1.6 kHz) as described

in Section 3.2.3. We obtain lnBFS/N from each run and plot them against the

injected amplitudes in Figure 3.12.

We notice an exponential trend once the amplitude is above a certain threshold.

However, unlike in the simulated data where the threshold set is between a positive

and negative lnBFS/N value, this time the lnBFS/N values do not go below 126,

which is way above the threshold lnBFS/N = 8. Even if the injected amplitude

gets lower than the established threshold h0,t ∼ 4 × 10−22, having a value of

lnBFS/N > 126 means that the data is still preferring the existence of a signal,

no matter how small the injected amplitude is.
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Figure 3.11: O4 ASD superimposed onto Figure 1.1. The O4 ASDs are calculated
using 128 seconds of background data from the Hanford (H1), Livingston (L1), and
Virgo (V1) interferometers, Tukey windowed and Welch-averaged every 4 seconds
with 0.4-second overlaps.

To figure out the problem, we check one of the corner plots of these low-

amplitude injections. Figure 3.13 shows the corner plot for an injected waveform

of amplitude h0 = 1.0 × 10−23 and frequency f0 = 1.6 kHz. From the corner

plot, it seems that the sampler succeeded in recovering a damped sinusoid with

a maximum likelihood amplitude of around 4.41× 10−22 and frequency of around

1.01 kHz which are different from the injected values. The frequency range near

1.01 kHz (as shown in Figure 3.11) actually corresponds to a region where lines

are present in the detector’s PSD. That means the sampler is recovering a noise

line that is mistaken as a damped sinusoid signal (i.e. one of the violin modes can

be modeled as a damped sine time series). This recovery is quantified by a high

lnBFS/N , which means the data strongly prefers the signal being present from

what are physically noise lines.

To test this hypothesis, we limit the frequency prior inside bilby such that

the frequency range does not include any high amplitude lines. This prompts

bilby to sample the frequencies inside this limited bandwidth. We work with the

bandwidth 2.5 − 3.0 kHz (with the detectors’ corresponding noise ASD shown in
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Figure 3.12: The signal-to-noise Bayes factor lnBFS/N as a function of the ampli-
tude of the damped sinusoid injected onto LIGO-Virgo O4 data. The minimum
lnBFS/N recorded was around 126, which is a really strong evidence for the pres-
ence of a damped sinusoid.

Figure 3.14) and inject waveforms in the frequency 2.7 kHz. Then a set of 40

damped sinusoid signals of varying amplitudes h0 ∈ [10−23, 10−20] was sampled.

We plot the recovered signal-to-noise lnBFS/N against the injected waveform’s

amplitude for the reduced frequency prior runs in Figure 3.15. We see that the

lowest positive lnBFS/N value belongs to the injection run with h0 = 5.878×10−22

with its corresponding lnBFS/N = 6.59. This value is below the strong evidence

threshold, but its positive value means that the data already prefers the signal

over the noise model. Below this amplitude, the lnBFS/N is already negative.

Checking the corner and trace plots of this particular injection, we see that all

sampled parameters h0, τ, f0, t0 are recovered properly and that their MLE are

close enough to the injected values. The next data point is an injection with

h0 = 7.443×10−22 with a corresponding lnBFS/N = 22.19. We can conclude that

the amplitude threshold for the O4 data surrounding the Vela pulsar glitch should

be around 6 − 7 × 10−22 in order for the sampler to conclude a strong preference

for the damped sinusoid signal to exist within the data. Note that this is higher

than the threshold set for simulated data h0,t ∼ 4× 10−22 which reflects the effect
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3.3. Results

Figure 3.13: Corner plot for a damped sine with amplitude h0 = 1.0 × 10−23

injected to O4 data, with a corresponding lnBFS/N ≈ 126. For a low-amplitude
injection, its Bayes factor is suspiciously high, meaning the sampler is picking up
a damped sinusoid signal at a frequency of about 1.01 kHz.

Figure 3.14: O4 noise ASD within the limited bandwidth from 2.5−3.0 kHz. This
data is considered to understand the effect of the experimental lines in the real
GW data.
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of the higher ASD values from O4 than the design sensitivity data as shown in

Figure 3.11.

Figure 3.15: The signal-to-noise Bayes factor lnBFS/N as a function of the corre-
sponding damped sinusoid amplitude injected onto real LIGO-Virgo O4 data. The
samplers used in this plot used a limited frequency prior, f0 ∈ [2.5, 3.0] kHz. The
amplitude threshold where the data has strong preference for the signal model is
at h0 = 5.878× 10−22.

3.3.3 Removal of noise lines in real data ASD

To carry out the search in O4 data, we need to mitigate the effects of the

lines present. In literature there have been attempts on systematically removing

the noise lines in ASD of real GW strain data; one example uses MCMC to fit

several Lorentzians to the lines and adapt each of them [55]. Several attempts

on lines removal have been made on our end but the following approach seems

the most promising. We use a data preprocessing method called “notch filtering".

This method removes certain frequencies from the analysis such that the ASD

curve of the strain data goes to zero in these frequencies. In effect, the notch filter

will mask the frequency bins and remove them in the likelihood calculation of

Eq. (2.9). bilby provides such a function for notching certain frequency ranges,

however the ranges must be manually given by the user. We supply the range of
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frequencies where we see the forest of noise lines as illustrated in Figure 3.11. The

masked ASD for the two LIGO interferometers is shown in Figure 3.16. We have

not cleared all the lines within the prior range f0 ∈ [0.8, 4.0] kHz, but later we

show that this process suffices.

Figure 3.16: Notch-filtered noise ASD.

Then, we can let the sampler search throughout the uniform prior f0 ∈ [0.8, 4.0]

kHz again. After the pipeline is applied, we obtain lnBFS/N and compare it with

the injected amplitude in Figure 3.17. We also superimpose the lnBFS/N values

obtained with the reduced frequency prior from Figure 3.15. The trend and the

injection run where the lnBFS/N becomes positive is the same for both processes

(albeit the lower lnBFS/N values for the notched O4 data), so it is advisable to

mask the frequencies of the prevalent noise lines.

3.4 Discussion and conclusion

In this chapter, we use the signal-to-noise Bayes Factor lnBFS/N to evaluate

whether the data prefers a model that a GW signal is present or when the data

prefers a noise-only model. The closed-box results shown in this chapter are meant

to serve as data quality checks for the Bayesian search of a GW burst signal in

O4 data surrounding the Vela glitch. Indeed, the burst inference pipeline we

introduced can reconstruct a certain signal with physically meaningful parameters

from O4 data. Our closed-box results also give us an idea of what to expect

when a burst GW search is conducted. We find two amplitude thresholds –
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3.4. Discussion and conclusion

Figure 3.17: The signal-to-noise Bayes factorlnBFS/N as a function of the damped
sinusoid amplitude injected to the notched LIGO-Virgo O4 data (blue points),
superimposed on Figure 3.15 (red points).

one for the simulated Gaussian data (h0,t ∼ 4 × 10−22) and another for the O4

data (h0,t ∼ 7 × 10−22). If the burst GW signal from the Vela pulsar glitch

has an amplitude above this threshold, then we can expect to find it within the

collected O4 data. The pipeline made this inference by analyzing the dependence

of lnBFS/N on the injected amplitude.

The next step is to apply this pipeline to a real OSW to search for a certain

signal (such as “opening the box" for the Vela glitch). In this step, we do not need

to inject a signal; rather, we model the data such that it contains a signal, then we

can calculate this signal’s lnBFS/N and compare the results with other detection

statistics. In case of a lnBFS/N result below the strong evidence threshold, we will

estimate the 90% confidence level on the GW energy calculated with Eq. (3.7)

from the posterior distribution on h0.

44



Chapter 4

Burst model comparison using
the Bayesian inference pipeline

In this chapter, we aim to determine the nature of a burst GW detection in a

Bayesian manner. It was established in Chapter 1 that, due to the vagueness and

few assumptions of the detection methods for burst-type GWs, we are not able to

determine which source produced the signal as easily as for CBCs. We propose

to use the Bayes factor to compare different signal models given a particular

waveform signal exists in the data. For two disparate signals labeled as A and B,

we can compute their evidences using

ZA =

∫
dθ L(θ)πA(θ)

ZB =

∫
dϑ L(ϑ)πB(ϑ)

(4.1)

where θ and ϑ are the signal parameters for signal model A and B, respectively. 1

It is assumed that we use the same (log) likelihood, Eqs. (2.7) and (2.9), for both

models. Then the model comparison Bayes factor is given by BFA/B = ZA/ZB.

We reuse the pipeline described in Sections 2.4 and 3.2.2. The strain data are

processed in the same manner, except that we sample different kind of waveforms

which are disparate from the injected GW signal. This changes the signal template

µ in the likelihood calculation of Eq. (2.9). Then, to solve the posterior in Eq.

(2.3) and the signal evidence in Eq. (4.1) we supply the prior of this disparate

signal template. In theory, this process mimics an unmodeled search: we are not

really sure what to look for so we test different burst models. But since we injected

the waveform ourselves we know what to expect, and the sampler determines if

the sampled waveform can be inferred from the data.
1It does not matter if the number of parameters are different for the two models.
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4.1. Models used for burst GW source identification

4.1 Models used for burst GW source identifica-
tion

In this section, we list down some of the possible burst GW models we can use

together with their possible sources. So far in this thesis we have used the damped

sinusoid (labeled DS) waveform as a model of the GW emission due to the f-mode

excitation of neutron stars. Another burst signal that can be used for multiple

models is the sine-Gaussian (labeled SG) which is implemented in bilby as [44]

h+(hrss, τ, f0) =
hrss

√
πτ

2
√
α(1 + e−Q2)

(
e−π2τ2(f+f0)2 + e−π2τ2(f−f0)2

)
(4.2)

h×(hrss, τ, f0) =
ihrss

√
πτ

2
√
α(1− e−Q2)

(
e−π2τ2(f+f0)2 − e−π2τ2(f−f0)2

)
(4.3)

where

τ =
Q√
2πf0

(4.4)

α =
Q

4
√
πf0

. (4.5)

This makes the sine-Gaussian a frequency-domain model (which is actually

preferred by bilby as the likelihood calculations are carried out in the frequency

domain). The sine-Gaussian has been used as a wavelet basis for decomposing

complicated burst-type GW emissions as well as modelling transient noise [21].

It can also serve as a wavelet basis for the core-bounce part of a core-collapse

supernova (CCSN) [20]. We will see later how its generic nature can complicate

burst GW identification.

Yet another class of burst-type GW signals comes in the form of power-law

emissions. This type of burst signal may be indicative of a cosmic string, which

have cusps and kinks in its loops. These cusps and kinks produce gravitational

radiation which is implemented in LALSuite [39] as

h̃+(f ;h0, fhigh < f, α, flow, t0) = h0f
−α

(
1 +

f 2
low

f 2

)−4

exp

(
1− f

fhigh

)
exp(−2πıft0)

h̃+(f ;A, fhigh ≥ f, α, flow, t0) = h0f
−α

(
1 +

f 2
low

f 2

)−4

exp(−2πıft0)

h̃×(f) = 0.

(4.6)
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4.2. Results

Here, we modify the power-law model such that we include a phase factor for

the time of arrival t0. For cosmic string cusps, α = 4/3 while for cosmic string

kinks, α = 5/3.

In general, any waveform can be applied to our pipeline for sampling and

inference. This includes the phenomenological waveforms used for CBC parameter

estimation (e.g. the Inspiral-Merger-Ringdown family of waveforms [56], with a

general form h(f) = A(f)eıΦ(f)) or the waveforms with changing frequency (e.g.

in the post-merger of a BNS inspiral [57]). The flexibility of the pipeline allows us

to compare the signal evidences of these waveforms with one another.

4.2 Results

In this section, we present some results from the application of our burst

inference pipeline to the comparison of signal models. In particular, we adapt

the pipeline from Section 2.4 to a comparison scenario, where we inject a damped

sinusoid and then sample a custom cosmic string cusp waveform and a sine-

Gaussian waveform.

To make things simpler, we use simulated Gaussian strain data with a damped

sinusoid waveform injected (the same dataset from Chapter 3). Then we call an

instance of the sine-Gaussian waveform generator from bilby and write our own

instance of the cosmic string cusp generator. We also supply the sampler with

the corresponding priors for the different signal models. Aside from the posterior

distributions of the cosmic string cusp and sine-Gaussian waveforms’ parameters,

the results give the natural logarithm of the signal evidence in Eq. (4.1) and

then we can compare these new evidences with the signal evidence obtained from

previously sampling a damped sinusoid in Chapter 3. This creates a different (log)

Bayes factor that is used for model comparison,

lnBFDS/B = lnZDS − lnZB (4.7)

where lnZDS is the previously calculated damped sinusoid log signal evidence

and lnZB can be the log signal evidence of the sine-Gaussian SG or the cosmic

string cusp CS signal models.
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4.2. Results

4.2.1 Neutron star f-mode excitation versus cosmic string
cusp

We compare the cosmic string power-law GW signals with the damped sinusoid

GW signals from neutron star f-mode excitations. This analysis has been done

before [38] where they sampled a (confirmed) BBH merger using cosmic string

models to test some model comparison hypotheses. In particular, we compare the

cosmic string cusp with power-law index α = 4/3. From Eq. (4.6) we see that the

waveform is linearly polarized such that only h+ is nonzero. The parameters that

will be sampled include the waveform amplitude h0, high frequency cutoff fhigh,

low frequency cutoff flow, and time of arrival t0 2. Recall from Chapter 1 that the

high frequency cutoff fhigh dictates the geometry of the GW emission [58], while

flow is not physically motivated; it controls the high-pass filter term.

We use the same dataset where damped sinusoids of varying amplitude h0 ∈
[10−23, 10−20] are injected onto simulated data, with all other parameters kept

constant: f0 = 2.7 kHz, τ = 0.5 s and t0 set on the fake OSW. Then we supply

the waveform (4.6) to bilby together with the corresponding priors:

• Amplitude h0: Uniform ∈ [10−25, 10−19]

• High frequency cutoff fhigh: Uniform ∈ [30, 4096] Hz

• Low frequency cutoff flow: Uniform ∈ [0, 16] Hz

• Time of arrival (extra phase factor) t0: Uniform ∈ [0, 4] s

After running the pipeline, we check the posterior recovery by looking at a

particular injection’s result. The posterior distributions for one particular run are

shown as a corner plot in Figure 4.1. This data has an injected damped sinusoid

with h0 = 10−21. We see that there is no sufficient convergence, i.e. the sampler

cannot retrieve the parameters of a cosmic string cusp waveform that fits the

data. The one-dimensional marginalized distributions on the diagonals further

show that the posterior almost looks like the priors we assigned, and according

to Bayes’ theorem Eq. (2.3) this means the likelihood of the cosmic string cusp

appearing in the data is very low.

After sampling the cosmic string cusp from all 40 GW strain data with damped

sinusoid injections of varying amplitude, we collect the log signal evidence lnZCS

2Even though we are using the same notation as some of the damped sine parameters, it does
not mean that these parameters are defined in the same way.
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4.2. Results

Figure 4.1: Corner plot for a cosmic string cusp sampler when there is a damped
sinusoid with parameters h0 = 10−21, τ = 0.5 s and f0 = 2.7 kHz injected onto
simulated Gaussian strain data. The orange lines are the injected damped sinusoid
parameters.

and compare it with the log signal evidence of a damped sinusoid lnZDS from the

damped sinusoid sampler. In Figure 4.2 we show lnBFDS/CS as a function of the

injected damped sinusoid amplitude. We see that after a certain amplitude, the

log Bayes factor becomes positive. This certain amplitude is the same amplitude

at which the signal-to-noise lnBFS/N for the damped sinusoid becomes positive,

i.e. h0 = 3.45 × 10−22 (see Figure 3.6). Thus Figure 4.2 reflects the amplitude

threshold for which the damped sinusoid signal starts to be observed. It implies

that from this amplitude upwards, the damped sinusoid model is preferred.

However, the converse is not true: just because lnBFDS/CS < 0 for some

injection runs does not mean the data prefers the cosmic string cusp model. We

know this since we have not injected any cosmic string cusp. It might be misleading

to use a signal vs. signal Bayes factor alone as it might cause confusion in burst

searches where there is no injection and no a priori information on the source. We

need to show the difference between the samplers by comparing their respective

signal-to-noise lnBFS/N values in Figure 4.3. Recall that lnBFS/N compares the
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4.2. Results

Figure 4.2: Log Bayes factor comparing damped sinusoid signals with power-
law signal (from a cosmic string cusp) lnBFDS/CS as a function of the damped
sinusoid’s amplitude injected onto simulated Gaussian strain data.

signal model against a noise model. We see that there is no change in lnBFS/N for

the cosmic string cusp, further supporting the fact that the power-law waveform

cannot be recovered from a data with a damped sinusoid waveform injected onto

it. This implies that power-law waveforms do not look like damped sinusoid

waveforms regardless of the loudness of the signal. We can only deduce from our

analysis that our pipeline can definitely distinguish the power-law signal from a

damped sinusoid one if the signal is loud enough, otherwise the pipeline would

have a difficult time telling us which model to prefer.

4.2.2 Damped sinusoid versus sine-Gaussian waveforms

In this section we compare a single sine-Gaussian waveform with the injected

damped sinusoid waveform from NS f-mode excitations. This comparison is more

relevant for the Vela pulsar glitch since sine-Gaussians are extensively used as

wavelet basis for burst waveforms. In this study we focus on using one sine-

Gaussian waveform (instead of combining multiple wavelets) to compare against

a damped sinusoid waveform injected onto both simulated Gaussian noise and O4
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4.2. Results

Figure 4.3: Comparing the signal-to-noise lnBFS/N from the damped sinusoid
and cosmic string cusp samplers when there is a damped sinusoid injected onto
simulated Gaussian strain data.

data surrounding the Vela pulsar glitch. We use the same set of 40 injections

where the damped sine amplitude varies from 10−23 to 10−20. This set is similar

to the one used for Chapter 3 and the cosmic string sampler; the other injection

parameters are kept constant: f0 = 2.7 kHz, τ = 0.5 s, and t0 is 0.25 seconds after

the fake OSW start time.

In this case, the parameters that bilby will sample are hrss, Q, f0 which cor-

respond to the peak amplitude, quality factor (which dictates the number of sine

cycles within the Gaussian envelope), and the central frequency of the Gaussian

envelope (as viewed in frequency domain) respectively. We also sample one ex-

trinsic parameter, the geocentric time of arrival t0. The priors for each parameter

are listed as follows:

• Peak amplitude hrss: Log-uniform ∈ [10−24, 10−19]

• Quality factor Q: Log-uniform ∈ [10−2, 106]

• Frequency f0: Uniform ∈ [0.8, 4.0] kHz

• Geocentric peak time t0: Uniform on the whole fake on-source window

(OSW)
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4.2. Results

This set of parameters and the range of their corresponding priors is indepen-

dent of those set for the damped sinusoid. We run the sampler for each injection

and check the sampler’s convergence using an example corner plot shown in Fig-

ure 4.4. We see that for a very loud damped sinusoid signal with h0 = 10−20,

the sine-Gaussian sampler picks up the same frequency as that of the injected

damped sinusoid. We also see that the sampler converges for all other parameters,

and together with the very high lnBFS/N of this result, this means that a loud

damped sine signal might be mistaken as a sine-Gaussian. In Figure 4.5 the in-

jected damped sinusoid waveform is plotted together with the MLE reconstructed

waveform for the sine-Gaussian. We see that the sampler picked out the main fea-

ture of the damped sinusoid in frequency domain (i.e. the single frequency peak),

but the shape of the damped sinusoid is not that visible in the time domain. It

turns out that when we zoom further in the time domain, the oscillations from

the maximum likelihood estimate (MLE) sine-Gaussian follow those which are in

the injected damped sine, reflecting the sampler’s ability to recover the frequency.

Figure 4.4: Corner plot for the sine-Gaussian sampler with a damped sinusoid
injected on the strain data. The orange lines signify the frequency of the injected
damped sinusoid.
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4.2. Results

Figure 4.5: Left: The frequency-domain representation of the injected damped
sinusoid with h0 = 10−20 together with the maximum likelihood estimate (MLE)
sine-Gaussian waveform. Right: The equivalent time-domain representation.

To check which damped sinusoid injections might be mistaken for a sine-

Gaussian, we collect the signal evidences for the sine-Gaussian sampler lnZSG and

calculate the Bayes factor lnBFDS/SG. We plot this value against the injected

signal amplitude in Figure 4.6. Recall that when lnBFDS/SG > 0 the damped-

sine model is preferred over the sine-Gaussian model. This positive log Bayes

factor trend starts to occur at the injection run with h0 = 3.455 × 10−22 with its

corresponding lnBFDS/SG = 1.843. 3 However, it is in the next louder injection

with h0 = 4.124× 10−22 that the log Bayes factor crosses the threshold for strong

evidence, with lnBFDS/SG = 9.62.

Recall that the damped sine sampler’s threshold h0,t from Chapter 3 occurs at

the injection run with h0 = 3.45× 10−22, so we guess that there is a difference in

the samplers’ signal-to-noise lnBFS/N . Indeed, this difference is shown in Figure

4.7. The same trend is observed for both samplers but with higher lnBFS/N values

for the damped sine sampler, indicating the preference for the damped sine model

over the sine-Gaussian model. Since both of their sampler’s lnBFS/N values

become positive, this implies that signals can be easily mistaken for one model

over another. However since the damped sinusoid’s lnBFS/N values are higher

than the sine-Gaussian, the preference is given to the damped sinusoid (which

makes sense as we know there is a damped sinusoid in the data). This further

solidifies the argument that the signal-vs-signal Bayes factor cannot be used on its

own; we need to use other statistical information on the nature of the source that
3It is true that below this amplitude there are injection runs with a positive value of lnBFDS/SG,

but the magnitude of their log Bayes factor ranges from 0.001 − 0.01, so the chosen model is
indeterminate.
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4.2. Results

Figure 4.6: Damped sine vs. sine-Gaussian log Bayes factor lnBFDS/SG as a
function of the damped sinusoid signal amplitude injected onto simulated Gaussian
strain data.

would compliment the results of the model comparison study.

To test the consistency of the sampler, we also inject 40 sine-Gaussians with

different root-sum-square amplitudes hrss ∈ [10−23, 10−20], then using our pipeline

we sample a damped sinusoid for each injection run (basically the inverse of the

pipeline where we injected a damped sine then sampled a sine-Gaussian) and

collect the posteriors and signal and noise evidences. The plot of signal-to-noise

lnBFS/N of the damped sinusoid samplers as a function of the injected sine-

Gaussian hrss is shown in Figure 4.8. Just like the previous result, we see that the

sampler prefers the existence of the damped sinusoid from an injected amplitude

of hrss = 3.45 × 10−22. When we have a loud signal, the pipeline can determine

if we can recover it from the data. But running several waveform samplers is

important if we want to determine the nature of a burst GW source as we can

compare their results using the signal-vs-signal Bayes factor.
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4.2. Results

Figure 4.7: Comparison of the signal-to-noise lnBFS/N from the damped sinusoid
and sine-Gaussian samplers when there is a damped sinusoid injected onto simu-
lated Gaussian strain data.

Figure 4.8: The signal-to-noiselnBFS/N of a damped sinusoid sampler as a function
of the sine-Gaussian peak amplitude hrss injected onto simulated Gaussian strain
data.
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4.3 Discussion and Conclusions

In this chapter, we tested the pipeline’s ability to distinguish between different

classes of GW burst signals. We have shown two cases: a case where the wave-

forms are deemed different by the sampler (damped sine vs. power-law) and

another where the waveforms can look the same for the sampler (damped sine vs.

sine-Gaussian). Although the analysis here only involves injections to simulated

Gaussian data where we know the signal’s true model a priori, we can use the

signal vs. signal Bayes factor to quantify which is the preferred signal (especially

when we perform unmodeled searches). We also confirm the limitation of the

Bayes factor where it cannot decisively choose between two signal models when

its magnitude is low. This is confirmed by the negative log Bayes factors with

magnitudes near zero, where we cannot immediately conclude that the cosmic

string cusp or sine-Gaussian model is preferred as they do not exist in the data a

priori.

Furthermore, the results involving the sine-Gaussian reveal the generic nature

of this waveform. It implies that when we only sample data using a sine-Gaussian,

we can always recover a sine-Gaussian signal. To properly use the pipeline, another

waveform sampler must be considered. This emphasizes the importance of testing

several models as the Bayes factor does not provide the complete picture. Just like

in [38], we can re-analyze confirmed CBC detections using sine-Gaussian wavelets

for example. We can further extend the capabilities of our pipeline by considering

combinations of models in what is known as a trans-dimensional MCMC algorithm,

something that was proposed in the Bayeswave algorithm [21].
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Conclusions and
Recommendations

In this thesis, we present a Bayesian inference pipeline that compares models

using the Bayes factor as a figure-of-merit. The Bayes factor compares the evi-

dences (or marginalized likelihoods) of two models, providing insight into which

model is more supported by the data. Our analyses involve several steps: (1)

injecting waveforms onto both simulated and real data, (2) sampling different

waveforms from this data, and (3) obtaining the posterior distributions and ev-

idences. The flexibility of the pipeline allows it to accommodate a variety of

waveforms, making it adaptable to both detection (signal versus noise) 4 and

comparison scenarios (signal versus signal).

We applied our pipeline to a closed-box analysis of the recent Vela pulsar glitch,

where we placed a limit on the amplitude of a damped sinusoid waveform generated

by the pulsar glitch’s excitation of the neutron star f-mode. This amplitude limit

is derived from the corresponding value of the signal-to-noise Bayes factor, where

a threshold of lnBFS/N = 8 indicates a strong preference for a model in which

the signal is present, s(t) = n(t) + h(t). This limit on the amplitude can also be

translated into a limit on the energy released. If the Vela pulsar glitch of 2024

April 29 released energy — primarily in the form of gravitational waves — above

the threshold, then a signal could be detectable in the GW strain data. This

energy threshold will be computed from the damped sine amplitude’s posterior

distribution and considered for future work.

Additionally, we tested the pipeline’s capability to compare disparate signal

models. The sign of the logarithm of the Bayes factor calculated between two

signal models indicates the preferred model, while its magnitude tells how much

it prefers one model over the other. From our analysis the generic nature of

sine-Gaussian is observed, and why it is the preferred basis for phenomenological
4In contrast to an unmodeled search, we assume the signal is well-modeled.
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modelling of burst-type GW. We also conclude that while the Bayes factor provides

valuable insights into burst GW model selection, it alone does not provide a

complete picture of the burst signal’s origin. It does, however, remain a useful

tool for determining which waveform model better fits a confirmed detection.

In summary, the Bayesian inference pipeline developed in this thesis offers a

versatile framework for gravitational wave data analysis, capable of both detection

and model comparison tasks. While the Bayes factor provides a robust measure

of model preference, further work is needed to refine our understanding of the

physical implications behind these preferences, particularly with respect to energy

release and source characterization in gravitational wave events. Future research

will focus on applying this framework to more complicated models and extending

the analysis to include more complex waveform models (not only phenomenological

ones) as well as transdimensional analysis.
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Appendix A

Burst GW inference pipeline in
python

In this appendix, we show an example python code for our Bayesian inference

pipeline. Specifically, we inject a damped sinusoid in this code to simulated

Gaussian data; hence we need to fetch the design sensitivity ASD from [13]. In

injecting and sampling multiple waveforms, it is advised to use multiprocessing

methods such as HTCondor. 1

01 | import numpy as np
02 | import matplotlib.pyplot as plt
03 | import pandas as pd
04 | import bilby
05 | from bilby.gw.detector.psd import PowerSpectralDensity
06 | from gwpy.frequencyseries import FrequencySeries
07 | from scipy.signal.windows import tukey
08 | import sys
09 | import json
10 | import argparse
11 |
12 | # parser arguments for reading txt files of parameters and

assigning
13 | # job numbers in HTCondor
14 |
15 | parser = argparse.ArgumentParser(description="Inference on f-

mode damped sinusoid parameters (shape parameters only).",)
16 | parser.add_argument("parameter_file", type=str, help='Filename

of the parameter list. List must be three-column format for `
amplitude `, `damping_time `, and `frequency ` respectively')

17 | parser.add_argument("jobid", type=str, help='Job ID to be used
for condor-dag.')

18 | parsed_args = parser.parse_args()
19 | jobid = int(parsed_args.jobid)
20 |
21 | ################## Functions ############################
22 | # define the half-Tukey window
23 | def half_tukey(N, alpha=0.5):
24 | full = tukey(N, alpha)
25 | half_tukey = np.ones(N)

1https://htcondor.readthedocs.io/en/latest/
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26 | half_tukey[:N//2] = full[:N//2]
27 |
28 | return half_tukey
29 |
30 | # define the time-domain damped sinusoid model
31 | def fmode_strain(time, amplitude , damping_time , frequency ,

cosincl, t0, phase):
32 | r"""
33 | Damped sinusoid waveform (elliptically polarized , Tukey

windowed).
34 | Accepts waveform parameters directly.
35 |
36 | .. math::
37 | h_+(t) = \dfrac{1}{2} (1+(\cos \iota)^2) A \exp (- (t-

t_0)/\tau) \sin(2 \pi f_0 (t-t_0))
38 | h_\times(t) = \cos(\iota) A \exp (- (t-t_0)/\tau) \sin(2

\pi f_0 (t-t_0))
39 |
40 | Parameters
41 | ----------
42 | time: array-like
43 | The times at which to evaluate the model. This is

required for all
44 | time-domain models.
45 | amplitude: float
46 | Waveform amplitude (dimensionless)
47 | damping_time: float
48 | Scaling factor for the damping exponential term (in

seconds)
49 | frequency: float
50 | Characteristic (constant) frequency (in kHz)
51 | cosincl: float
52 | (cosine of the) polarization angle between h_+ and h_x
53 | phase: float
54 | Phase offset due to start time (in rad)
55 |
56 | Returns
57 | -------
58 | dict:
59 | A dictionary containing "plus" and "cross" entries.
60 |
61 | """
62 | incl_term = 0.5*(1+cosincl**2)
63 | plus = np.zeros(len(time))
64 | tidx = (time >= t0)
65 | Nidx = len(time[tidx])
66 | alpha = 1/(frequency*1000) # tapering fraction for Tukey

window
67 | window = half_tukey(Nidx, alpha)
68 | plus[tidx] = (
69 | window*incl_term*amplitude # amplitude: h0, not A = h0

exp(-t0/tau)
70 | * np.exp(-(time[tidx] - t0) / damping_time)
71 | * np.cos((2 * np.pi * (frequency*1000) * (time[tidx])) +

phase)
72 | )
73 | cross = np.zeros(len(time))
74 | cross[tidx] = (
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75 | window*cosincl*amplitude
76 | * np.exp(-(time[tidx] - t0) / damping_time)
77 | * np.sin((2 * np.pi * (frequency*1000) * (time[tidx])) +

phase)
78 | )
79 |
80 |
81 | return {"plus": plus, "cross": cross}
82 |
83 | # define the function for reading the parameters from txt files
84 | def read_params(parameter_file , jobid):
85 | with open(parameter_file , "r") as f:
86 | lines = f.readlines()
87 | line = lines[int(jobid)+1].strip() # +1 to skip header
88 | amp, tau, nu = list(map(float, line.split()))
89 | return amp, tau, nu
90 |
91 | print("Starting ...")
92 |
93 | ###################### Constants #########################
94 | # set up duration and sampling frequency
95 | duration = 4
96 | sampling_frequency = 8192
97 | ts_duration = 132 # Full TimeSeries duration
98 |
99 | # parameters from txt file

100 | amp, tau, nu = read_params(parsed_args.parameter_file , jobid)
101 |
102 | # set up random seed number
103 | bilby.core.utils.random.seed(190521)
104 |
105 | # set up known source parameters
106 | trigger_time = 1398458982 # GPS Time [s] from Matt Pitkin
107 | OSW_start_time = 1398457700 # fake OSW start
108 | OSW_stop_time = OSW_start_time + duration
109 |
110 | # extrinsic params
111 | phase = 0.0
112 | ra = np.deg2rad(128.83606354)
113 | dec = np.deg2rad(-45.17643181)
114 | cosincl = np.cos(np.deg2rad(63.30)) # 63.30 or 116.70 deg, from

Patrick Sutton
115 | psi = np.deg2rad(130.629) # deg, from Patrick Sutton
116 |
117 | # other parameters
118 | roll_off = 0.4
119 | win_alpha = 2 * roll_off / duration # for PSD/TimeSeries Tukey

window
120 | min_frequency = 128.0
121 | max_frequency = 8192.0
122 |
123 | # create dictionary for injection parameters
124 | injection_parameters = dict(
125 | amplitude=amp,
126 | damping_time=tau,
127 | frequency=nu,
128 | t0=OSW_start_time+0.25, # time at which the waveform's

amplitude is max
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129 | cosincl=cosincl,
130 | ra=ra,
131 | dec=dec,
132 | geocent_time=OSW_start_time+0.25,
133 | psi=psi,
134 | phase=phase,
135 | )
136 |
137 | # set up bilby output
138 | outdir = f"simdata-oneamp-DSsampler/freq_{nu}"
139 | label = f"DSsampler -freq_{nu}"
140 | logger = bilby.core.utils.logger
141 | bilby.core.utils.check_directory_exists_and_if_not_mkdir(outdir)
142 | bilby.core.utils.setup_logger(outdir=outdir, label=label)
143 |
144 | ############## WaveformGenerator #########################
145 | waveform = bilby.gw.waveform_generator.WaveformGenerator(
146 | duration=duration ,
147 | sampling_frequency=sampling_frequency ,
148 | time_domain_source_model=fmode_strain ,
149 | parameter_conversion=lambda parameters: (parameters , list())

,
150 | start_time=OSW_start_time , # define the 4s waveform from the

start of the OSW
151 | )
152 |
153 | # WaveformGenerator check if nonzero
154 | td_plus = waveform.time_domain_strain(injection_parameters)['

plus']
155 | td_cross = waveform.time_domain_strain(injection_parameters)['

cross']
156 | hrss = np.sqrt(np.sum((np.abs(td_plus)**2 + np.abs(td_cross)**2)

* 1/sampling_frequency))
157 | logger.info(f"injection hrss = {hrss:.6e}")
158 | # with open('simdata-amp-hrss.txt', 'a') as file:
159 | # # file.write(f"# injected_amplitude calculated_hrss \n")
160 | # file.write(f"{amp:.6e} {nu:.6e} {hrss:.6e}\n")
161 |
162 | ######################## ASD files #########################
163 | LIGO_ASD = FrequencySeries.read('aLIGO18_ASD.txt', unpack=True)
164 | VIRGO_ASD = FrequencySeries.read('aVirgo18_ASD.txt', unpack=True

)
165 | # must contain frequency (col. 0) and ASD (col. 1)
166 |
167 | ############# Inteferometer object construction #############
168 | ifo_names = ["H1", "L1", "V1"]
169 | ifos = bilby.gw.detector.InterferometerList(ifo_names)
170 |
171 | # Assign ASDs
172 | ifos[0].power_spectral_density = PowerSpectralDensity(

frequency_array=LIGO_ASD.frequencies.value, asd_array=
LIGO_ASD.value)

173 |
174 | ifos[1].power_spectral_density = PowerSpectralDensity(

frequency_array=LIGO_ASD.frequencies.value, asd_array=
LIGO_ASD.value)

175 |
176 | ifos[2].power_spectral_density = PowerSpectralDensity(
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frequency_array=VIRGO_ASD.frequencies.value, asd_array=
VIRGO_ASD.value)

177 |
178 | # Limit the frequency range for sampling and construct fake OSW

strain data
179 | for ifo in ifos:
180 | # based on the PSD array data
181 | ifo.minimum_frequency=min_frequency
182 | ifo.maximum_frequency=max_frequency
183 | ifo.set_strain_data_from_power_spectral_density(

sampling_frequency=sampling_frequency , duration=duration ,
start_time=OSW_start_time)

184 |
185 | mf_snr = np.zeros(len(ifos))
186 | time_delay = []
187 |
188 | # Inject signal and calculate matched-filter SNR and geocentric

time delays for each interferometer
189 | for i, ifo in enumerate(ifos):
190 | ifo.inject_signal_from_waveform_generator(
191 | waveform_generator=waveform ,
192 | parameters=injection_parameters ,
193 | # raise_error=False,
194 | )
195 | time_delay.append(ifo.time_delay_from_geocenter(

injection_parameters['ra'], injection_parameters['dec'],
injection_parameters["geocent_time"]))

196 | mf_snr[i] = np.abs(ifo.matched_filter_snr(ifo.
get_detector_response(waveform.frequency_domain_strain(
injection_parameters), injection_parameters)))

197 |
198 | net_snr = np.sqrt(np.sum(mf_snr**2))
199 | logger.info(f"H1-L1-V1 network SNR: {net_snr:.3f}")
200 | logger.info(f"Saving frequency -domain plots for noise ASD and {

duration}-second strain ASD at {outdir}")
201 | ifos.plot_data(outdir=outdir, label=label)
202 |
203 | ################ Bayesian inference part

##########################
204 | # create the priors
205 | prior = bilby.prior.PriorDict()
206 | for key in ["psi", "ra", "dec", "cosincl", "geocent_time", "

phase"]:
207 | prior[key] = injection_parameters[key] # sets DeltaFunction

priors
208 |
209 | prior["amplitude"] = bilby.core.prior.LogUniform(1e-24, 1e-19, r

"$h_0$")
210 | prior["damping_time"] = bilby.core.prior.Uniform(0.087, 10, r"$\

tau$", unit=r"s")
211 | prior["frequency"] = bilby.core.prior.Uniform(0.8, 4.0, r"$f_0$"

, unit="kHz")
212 | # prior["cosincl"] = bilby.core.prior.Uniform(0, 1, r"$\cos \

iota$")
213 | prior["t0"] = bilby.core.prior.Uniform(OSW_start_time ,

OSW_stop_time , r"$t_\oplus$", unit="s")
214 | # prior["phase"] = bilby.core.prior.Uniform(-np.pi / 2, np.pi /

2, r"$\phi$")
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215 |
216 | # create the likelihood
217 | likelihood = bilby.gw.likelihood.GravitationalWaveTransient(ifos

, waveform)
218 |
219 | # testing the likelihood
220 | prior_sample = prior.sample()
221 | likelihood.parameters=prior_sample
222 | logger.info(f"example log-likelihood value calculated from prior

sample: {likelihood.log_likelihood_ratio():.6e}")
223 |
224 | # launch sampler
225 | result = bilby.core.sampler.run_sampler(
226 | likelihood ,
227 | prior,
228 | sampler="dynesty",
229 | sample='acceptance -walk',
230 | nlive=1000,
231 | walks=50,
232 | naccept=60,
233 | dlogz=0.1,
234 | npool=16,
235 | outdir=outdir,
236 | label=label,
237 | injection_parameters=injection_parameters ,
238 | # rstate=rstate,
239 | # conversion_function=lambda parameters:
240 | )
241 |
242 | # Make corner plot
243 | sampled_params = ["amplitude","damping_time", "frequency", "t0"]
244 | truth_params = {key: injection_parameters[key] for key in

sampled_params}
245 | logger.info(f"Saving corner plots for {' '.join([str(param) for

param in sampled_params])} on {outdir}")
246 | result.plot_corner(quantiles=(0.025,0.975), title_fmt='.2e') #

2-sigma
247 |
248 | # log the hrss, SNR, and ln BF values
249 | with open('simDSoneamp -nu-hrss-net_snr-lnBF.txt', 'a') as file:
250 | file.write(f"{nu} {hrss} {np.abs(net_snr)} {result.

log_bayes_factor}\n")
251 |
252 | # list MLE of parameters
253 | samples = result.posterior
254 | param_samples = {param: samples[param].values for param in

sampled_params}
255 | df = pd.DataFrame(param_samples)
256 | ml_params = df.iloc[samples.log_likelihood.idxmax()].to_dict()
257 | logger.info(f"Injected parameters: {injection_parameters}")
258 | logger.info(f"Maximum Likelihood Estimates of parameters: {

ml_params}")
259 | # with open('simDSoneamp -mle-params.txt', 'a') as file:
260 | # file.write(f"{nu} {ml_params} \n")
261 |
262 |
263 | # calculate Mean Absolute Error (MAE)
264 | mle_dict = injection_parameters.copy()
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265 | mle_dict.update(ml_params)
266 | mle_plus = waveform.time_domain_strain(mle_dict)['plus']
267 | mle_cross = waveform.time_domain_strain(mle_dict)['cross']
268 | MAE_plus = np.sum(np.abs(td_plus - mle_plus))/len(td_plus)
269 | MAE_cross = np.sum(np.abs(td_cross - mle_cross))/len(td_cross)
270 | logger.info(f"Mean Absolute Error (MAE) for hplus = {MAE_plus},

hcross = {MAE_cross}")
271 | with open('simDSoneamp -mean-abs-error.txt', 'a') as file:
272 | file.write(f"{nu:.6e} {MAE_plus:.6e} {MAE_cross:.6e}\n")
273 |
274 | # collect the time-series strain data (injected and MLE) then

save
275 | waveform_data = np.column_stack((waveform.time_array , td_plus,

td_cross , mle_plus , mle_cross))
276 | np.savetxt(f"{outdir}/freq-{nu}-waveforms.txt", waveform_data)
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