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The Sun as a star:

Investigating the Influence of Solar Activity

Features on Radial Velocity Signals

Brandon Rajkumar

Abstract

The search for small, Earth-like planets in the habitable zone of sun-like stars
using the radial velocity (RV) method is limited by stellar activity noise which can
hide the exoplanet signal. This thesis investigates the influence of stellar activity
features on RV signals using the Sun as a star approach, with the Sun serving
as a proxy for understanding stellar activity in sun-like stars. Comparing various
solar activity indicators with solar RV data revealed strong correlations between
the RV data and several solar activity indicators including the log(R′

HK) index,
SMW index, daily sunspot numbers, 10.7 cm radio flux, Mg II index, and total solar
irradiance (TSI), along with cross-correlation metrics such as the bisector span,
FWHM, and contrast suggesting that these indicators strongly reflect variations in
RV measurements. Results showed that including multi-proxy data like the 10.7 cm
radio flux, Mg II index, and TSI improves the accuracy of stellar models, highlighting
the importance of broad wavelength observations for exoplanet searches. This thesis
suggests that a multi-proxy approach is necessary to account for stellar activity
and improve the reliability of exoplanet detections, thus, applying the techniques
highlighted in this study to other sun-like stars can improve the likelihood of finding
Earth-like exoplanets in habitable zones.
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Chapter 1

Introduction

1.1 The Search for Exoplanets and the Detection

Methods

Humanity has long been interested in searching for life beyond the Earth, with much
effort spent on exploring the potential habitability of other solar system bodies.
However, the discovery of exoplanets, planets orbiting stars outside our solar system,
has opened a new search beyond the solar system allowing for a better understanding
of the distribution of life in the universe. Studying the distribution of planet sizes,
masses, and orbits as well as the properties of the stars they orbit can also improve
our understanding of the habitability of exoplanets. (Catala and Consortium, 2009).

Figure 1.1: Distribution of exoplanet masses and orbital periods discovered as of
July 2024 (Brenner et al., 2024).
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Since the discovery of the first exoplanet, approximately 5678 confirmed exo-
planets have been identified as of July 2024 (Brenner et al., 2024). Figure 1.1 shows
the distribution of exoplanet masses and orbital periods discovered using various
techniques with the most effective methods being the transit method, the radial
velocity (RV) method, direct imaging, and the microlensing method in that order.

The transit method has been used to detect 74.3 % (4216) of the confirmed exo-
planets by measuring the dimming of the host star’s brightness as the planet passes
directly between the star and the observer (Exoplanet Archive, 2023). The orbital
period, semi-major axis of the exoplanet’s orbit, and the planet-to-star radius ratio
can be determined using high-precision photometric monitoring. This method can
also be used to detect the presence of satellites and rings of the observed exoplanets
(Catala and Consortium, 2009) and allows for the study of multiple planets in a sin-
gle planetary system as they orbit the host star Winn (2010). However, the transit
method requires the planetary system to be aligned, which lowers the probability
of detection. The orbital inclination also affects the accurate classification of orbits
while binary stars and stellar activity can mimic transiting signals leading to false
positive detections (Seager and Mallen-Ornelas, 2003).

In contrast, the RV method has been used to detect 19.2 % (1089) of confirmed
exoplanets (Exoplanet Archive, 2023) by measuring the shift of the star’s spectral
lines due to the gravitational effect of the orbiting planet Mayor and Queloz (1995).
Figure 1.2 shows the motion of an exoplanet and its host star as they orbit around
a common center of mass. A periodic Doppler shift in the star’s spectral lines is
observed as the orbiting planet induces a wobble in the host star. The Doppler shift
can then be analyzed to derive the RV of the star.

Figure 1.2: Schematic diagram of the RV method for exoplanet detection (Cardenas,
2019).
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This method provides a more comprehensive view of planetary systems since it
can also detect non-transiting exoplanets (Mayor and Queloz, 1995). It is also more
effective at detecting planets with longer orbital periods (Cumming et al., 2008) and
can be used to directly measure the mass of a planet, providing information about
its composition and density (Butler and Marcy, 1996). However, the RV method is
less sensitive to orbits with large inclinations (Fischer et al., 2007) and requires long
observational periods to detect subtle periodic shifts in the stellar spectrum (Wright
et al., 2012). This method also contains an ambiguity concerning the orbital plane
and can be very sensitive to stellar activity which introduces noise into the RV
measurements leading to false positive detections. (Dumusque et al., 2011).

Microlensing is another method, that observes the change in the gravitational
lensing effect caused by a planet orbiting the lensing star. It has been used to dis-
cover 3.9 % (222) of confirmed exoplanets (Exoplanet Archive, 2023). This method is
not affected by stellar activity (Poindexter et al., 2005) and is sensitive to low-mass
planets (Gaudi and Gould, 1997). It does not depend on long-term observations
and can also provide information on planets with larger orbits since it can probe
farther away from the host star (Gaudi, 2011). However, microlensing events are
rare which reduces the probability of detection. They also limit the information
that can be obtained from the planetary system since the events are temporally
short (Gaudi, 2000). This method is unable to confirm individual planets and also
requires complex models which can be computationally demanding (Bennett et al.,
2016).

The direct imaging method uses chronography to reduce the glare of the host
star allowing for the direct imaging of the planet. It has been used to discover 1.4 %
(82) of confirmed exoplanets (Exoplanet Archive, 2023). It is particularly useful for
detecting planetary systems with multiple planets as well as young, self-luminous
planets (Aime and Vakili, 2006). This method is also used in the spectroscopic
characterization of exoplanet atmospheres and to determine the orbital parameters
such as orbital inclination or its distance from the host star. Direct imaging is,
therefore, a valuable tool for studying the formation and evolution of planets (Currie
et al., 2022), however, it can be limited to young and nearby systems with larger
planets further away from the host stars due to the challenges of brightness contrast
between the host star and planet (Quanz et al., 2015). It can also be challenging to
detect planets with short orbital periods since the direct imaging method requires
long exposure times (Currie et al., 2022).

Each of these methods has advantages and disadvantages, however, the pur-
suit of exoplanet discovery and characterization continues to drive developments
in technology and analytical techniques, expanding our understanding of planetary
evolution and their distribution in the universe. Figure 1.1 shows that while mas-
sive exoplanets have been well explored, Earth-mass exoplanets and lower have only
been discovered with short orbital periods of under 100 Earth days leaving a gap in
our understanding of exoplanet distribution. This gap is a direct result of the bias
and limits inherent in the methods and technology used to detect exoplanets. Some
of these limits can be overcome with improved methods and technology as well as
a better understanding of the data collected allowing us to obtain a more realistic
distribution of exoplanets in the universe.
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Additionally, the search for Earth-like planets orbiting sun-like stars is of particu-
lar interest since comparing properties such as orbital distance, size, and composition
to our own Sun-Earth system provides the highest probability of finding habitable
environments (Seager and Mallen-Ornelas, 2003).

1.2 The Radial Velocity Method

The RV method is particularly advantageous when searching for Earth-like planets
around sun-like stars. As previously mentioned, the RV method is sensitive to
planets with longer orbital periods which can help identify planets in the habitable
zone of sun-like stars (Cumming et al., 2008). It can also detect non-transiting
planets increasing the probability of detection (Mayor and Queloz, 1995). The
ability to directly measure the planet’s mass also provides a valuable constraint
on its composition which can provide information on its habitability (Butler and
Marcy, 1996).

Advancements in RV techniques such as improved instrumentation and data
analysis methods have also significantly enhanced the precision and sensitivity of RV
measurements enabling the detection of smaller, Earth-like exoplanets with greater
accuracy (Fischer et al., 2016; Dumusque et al., 2015). The RV method is also
less sensitive to stellar activity when compared to other detection methods which
reduces the likelihood of false positives and increases the reliability of detections
(Dumusque et al., 2011, 2015).

Additionally, the RV method complements other detection methods such as tran-
sit photometry and direct imaging, providing independent measurements of exo-
planet properties such as mass and orbital parameters (Mayor and Queloz, 1995;
Butler and Marcy, 1996). Combining RV measurements with transit photometry
and direct imaging provides comprehensive characterizations of exoplanet systems
(Souto et al., 2018; Brahm et al., 2020).

However, one of the main challenges of the RV method when searching for Earth-
mass planets orbiting sun-like stars in the habitable zone is due to the apparent RV
variations in the host star (Lanza et al., 2016). These variations are primarily
attributed to various astrophysical phenomena such as convective blueshift, gravi-
tational redshift, pressure-mode (p-mode) oscillations, and magnetic field activity.
They can introduce systematic errors and noise into RV data thus affecting the
precision.

Convective blueshift is a result of granulation on a star’s surface. Hot plasma
rises while cooler plasma descends creating a convective motion, resulting in a net
blueshift of the star’s spectrum. This can distort RV measurements by introducing
velocity shifts that mimic the signal of an orbiting planet (Meunier et al., 2010;
Chaplin et al., 2019). In contrast, gravitational redshift is a relativistic effect ob-
served when light escapes the star’s gravitational field, resulting in a systematic
redshift to the observed spectrum (Madsen et al., 2003). Although this produces a
systematic error, with a relatively constant effect for a given star, it should still be
considered when making precise RV measurements.

P-mode oscillations are standing acoustic waves in the star’s interior which can
contribute to RV variability. They can cause the star’s surface to oscillate up and
down leading to periodic changes in the star’s RV. Over short timescales, P-mode
oscillations can introduce RV variations on the order of several meters per second for
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sun-like stars (Dumusque et al., 2011), increasing the difficulty of detecting low-mass
planets.

While the effects of p-mode oscillations and convective blueshift can be reduced
by averaging observations on the same night (Dumusque et al., 2011) or on con-
secutive nights (Meunier et al., 2015) respectively, the effects of the magnetic field
are much more complicated. The effects of the magnetic field can mimic those of
exoplanet orbital periods as seen by Santos et al. (2014), presenting challenges in
separating stellar activity and planetary signals.

It is therefore important to better understand and characterize stellar signals as
they appear in RV measurements so that they can be disentangled from planetary
signals in RV data. However, due to the timescales of these signals which range
from minutes to years, standard RV observations do not have the sampling and
time baselines needed to characterize these signals making it difficult to understand
and remove stellar noise.

One proposed solution is to continuously monitor the Sun where we greatly un-
derstand the activity as a function of time and its astrophysical parameters with the
same instrument used for exoplanet characterization (Dumusque et al., 2021) such
as the High Accuracy Radial velocity Planet Searcher for the Northern hemisphere
(HARPS-N) spectrograph. The Sun is also an ideal test case to study the corre-
lation between RV measurements and stellar activity due to its proximity, detailed
observational data, and extensive research about its activity patterns.

Unlike, distant stars, which are observed as point sources, the Sun has been
observed in high resolution, allowing surface and atmospheric features to be observed
in great detail. When observing other stars, these features that can affect RV
measurements are not observable since all information is integrated into a single
spectrum (Haywood et al., 2016). The Sun’s well-studied 11-year activity cycle
can also provide more accurate corrections for stellar noise in RV measurements by
serving as a model to understand the magnetic activity cycle of other sun-like stars
(Dumusque et al., 2011). Therefore, the sun and its various solar activity indicators
can serve as an ideal proxy for sun-like stars and various stellar activity indicators.

1.3 Solar/Stellar Activity Indicators

The Sun is a G-type main-sequence star with distinct spectral features that are
used to understand its characteristics when searching for exoplanets around sun-like
stars. It is comprised primarily of hydrogen and helium and displays absorption
lines across a wide range of wavelengths which provides valuable information on its
composition, temperature, and atmospheric dynamics (Basu and Antia, 2008).

One of the key spectral features of the Sun includes the Fraunhofer lines which
are absorption lines caused by the presence of hydrogen, helium, calcium, and iron in
the solar atmosphere. The chemical composition and abundance of elements in the
Sun or sun-like stars can be determined by analyzing the positions and intensities
of these lines (Gray, 2021).

Another important feature of sun-like stars is the presence of Doppler shifts on
the stellar spectrum due to the star’s rotation and oscillatory motions, which provide
additional information about its dynamics. This results in a periodic variation in the
position of the spectral lines referred to as rotational and p-mode velocity variations
which can affect the RV measurements of sun-like stars (Gray, 2021). As previously
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mentioned, understanding and characterizing these velocity variations are important
for distinguishing between stellar-induced and planetary signals in the RV data.

Additionally, solar activity phenomena such as magnetic activity cycles, sunspots,
and solar flares can contribute to spectral variations in the shape and intensity of
spectral lines further affecting RV measurements. Similar activity on sun-like stars
can further complicate the search for planetary signals (Foukal, 2008). Understand-
ing solar activity can help interpret RV data obtained from sun-like stars allowing
for the distinction between stellar and planetary signals (Dumusque et al., 2015).

Sunspots are temporary phenomena in the Sun’s photosphere associated with
strong magnetic fields and are one of the most prominent solar activity indicators
(Rajkumar et al., 2017). They can cause localized changes in the Sun’s brightness
and induce RV variations due to their influence on the convective motions and
magnetic activity on the solar surface (Dumusque et al., 2011). Chromospheric
emission lines such as Hα and Ca II H and K lines are also important solar activity
indicators due to their sensitivity to magnetic activity. They can also serve as proxies
for stellar activity levels (Meunier et al., 2015).

Other solar phenomena such as solar flares, prominences, and coronal mass ejec-
tions (CMEs) also influence the Sun’s atmosphere and magnetic fields thus impact-
ing its RV measurements. Heating and expansion of the Sun’s atmosphere due to
the sudden release of energy from solar flares can lead to changes in the density
and velocity of plasma within the solar atmosphere (Hannah and Kontar, 2013).
Similarly, prominences, which are large bright loops of plasma suspended within
the solar atmosphere, can alter the dynamics of the surrounding plasma and intro-
duce disturbances in the solar magnetic field (Schmieder et al., 2013). Additionally,
CMEs can induce fluctuations in the Sun’s magnetic field strength and can cause
perturbations in the solar wind Kilpua et al. (2014). Understanding the complex re-
lationship between these solar events and the RV variations they cause is important
for disentangling stellar-induced and planetary signals around sun-like stars.

Monitoring the occurrences of these phenomena and their characteristics can
improve our understanding of their impact on the Sun’s atmospheric dynamics and
magnetic fields which influence RV measurements. This knowledge can then be
applied to the analysis of RV data of sun-like stars providing more accurate in-
terpretations and improving the reliability of exoplanet detections around sun-like
stars.

1.4 Overview of Thesis

This Master’s thesis aims to investigate the influence of various solar/stellar activity
features on RV signals. While several stellar activity proxies are already used to
separate stellar-induced and planetary signals, increasing the number of proxies can
improve the accuracy and confidence of this method, thus improving the reliability of
exoplanet detections. Using the Sun as a star approach, solar RV measurements are
compared to various solar activity indicators. Indicators that show good correlations
to the solar RV are then used as proxies to model the solar RV and are compared
to the actual RV measurements.

Chapter 2 describes the data used in this thesis, how the data is collected, and
the instrumentation used to collect the data (where necessary). It also discusses
the relationship of the data as a solar activity indication, the solar phenomena it
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describes, and its potential impact on stellar spectra and RV measurements. This
chapter also describes how the data is prepared for analysis, the methods used to
ensure that the various data sets are compatible, and the methods used to fill gaps
in the data.

Chapter 3 describes the methods of analysis and discusses the results obtained
before moving on to chapter 4 which summarises the main results and their im-
plications for exoplanet research. This chapter also highlights the methodological
considerations, limitations, and possible future directions of this work. Finally, at
the end of chapter 4, the internship carried out as a preparation for this thesis is
described and discussed.
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Chapter 2

Instrumentation and Data

To understand how solar proxies appear in RV observations, it is important to under-
stand the observational data as well as how the data is collected and processed. This
will allow for the distinction of features due to the instrument, the data collection
method, the processing method, or the solar phenomena themselves.

This analysis utilizes data obtained from several instruments and different meth-
ods, thus it is important to understand them fully before any comparison or corre-
lation is made. This chapter will describe the various data used in the analysis as
well as the instruments and methods used to obtain the data. It will also describe
how the data is prepared for analysis.

2.1 Solar Proxies

2.1.1 Daily sunspot number

The daily total sunspot number (Day SSnum) is a measure of the number and size of
sunspots visible on the solar surface each day. It is an important index for quantify-
ing solar activity and is typically used for understanding solar dynamics (Hathaway,
2015), space weather (Pesnell, 2012), and climate studies. The Day SSnum data used
in this study was obtained from the Royal Observatory of Belgium’s Solar Influences
Data Analysis Center (SIDC). The SIDC uses the standard definition of the Wolf
number, Ws to calculate the sunspot number (SN) for each individual observer:

Ws = k(10Ng +Ns), (2.1)

where k is a scaling coefficient specific to each observer which accounts for obser-
vational conditions and equipment differences, Ng is the number of sunspot groups,
and Ns is the total number of sunspots (Clette and Lefèvre, 2016). As of September
2011, a major revision of the Day SSnum series was undertaken. The details are
given by Clette and Lefèvre (2016), however, for this analysis only the Day SSnum
recorded between July 16, 2015, and July 18, 2018, was used.

As previously mentioned, sunspots are a photospheric feature of emerging mag-
netic field activity (Rajkumar and Haque, 2020) and therefore affect RV measure-
ments. Higher magnetic activity associated with increased sunspot activity can
induce RV variations due to the suppression of convective blueshift in active re-
gions (Dumusque et al., 2015). Figure 2.1 shows the time series for the Day SSnum.
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As expected, as we approach the solar minimum, less magnetic activity leads to a
decrease in Day SSnum with some days having no spots on the solar surface.

Figure 2.1: Time series for daily sunspot numbers with standard deviation.

2.1.2 Solar Flare Index

As mentioned, solar flares are sudden and intense bursts of radiation from the solar
surface. Flares are suddenly released when magnetic energy has built up in the
solar atmosphere and can release energy across the entire electromagnetic spectrum
from radio waves to gamma rays (Emslie et al., 2012). While there are various ways
to classify solar flares, this study uses data obtained from the Solar H-alpha Flare
Index available via the National Centers for Environmental Information (NCEI) of
the National Oceanic and Atmospheric Administration (NOAA).

The flare index data used was calculated by T. Atac and A. Ozguc from Bogazici
University Kandilli Observatory, Istanbul, Turkey using the method introduced by
Kleczek (1952). Kleczek’s method of calculating the solar flare index, Q, uses Equa-
tion 2.2 to quantify the daily flare activity:

Q = i× t, (2.2)

where i is the intensity coefficient of the flare as seen in Table 2.1 and t is the
duration of the flare in minutes (Kleczek, 1952). This equation assumes that the
product of duration and intensity gives an estimate of the energy emitted by the
flares. The daily calculations were determined by summing the index values for the
northern and southern hemispheres as well as the total surface before dividing by
the total observation time for that day (Ataç, 1987; Özgüç and Atac, 1989).

CHAPTER 2. INSTRUMENTATION AND DATA 9

https://www.ngdc.noaa.gov/stp/solar/solarflares.html
https://www.ngdc.noaa.gov/stp/solar/solarflares.html
https://www.ngdc.noaa.gov/stp/stp.html
https://www.noaa.gov/


Table 2.1: Intensity coefficient i as described by Kleczek (1952) for determining solar
flare index (Özgüç et al., 2003).
Class i

SF, SN, SB 0.5
1F, 1N 1.0
1B 1.5
2F, 2N 2.0
2B 2.5
3N, 3F, 4F 3.0
3B, 4N 3.5
4B 4.0

Table 2.2: Classification of flare area (Kennewell, 2024).
Importance Corrected Area
(Class) (Millionths of Hemisphere)
0 (S) 10 ≤ area < 100
1 100 ≤ area < 250
2 250 ≤ area < 600
3 600 ≤ area < 1200
4 area ≥ 1200

Table 2.3: Classification of flare brightness (Kennewell, 2024).
Designator Brightness Surrogate
(Class) (% of Background) (total bandwidth)
F (Faint) 160% ≤ brightness < 260% 0.08nm ≤ bandwidth < 0.12 nm
N (Normal) 260% ≤ brightness < 360% 0.12nm ≤ bandwidth < 0.2 nm
B (Brilliant) brightness ≥ 360% bandwidth ≥ 0.2 nm

Figure 2.2: Time series for solar flare index.
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Intense periods of solar activity, when there are many solar flare occurrences,
are represented by a high solar flare index value. Solar flares also release significant
amounts of energy into the stellar atmosphere causing localized heating and ioniza-
tion which can lead to transient spectral line shifts and variations that affect RV
measurements (Aigrain et al., 2016).

Figure 2.2 shows the solar flare index time series. We see that solar flare activity
is not as frequent as other activity indicators however, it may still reveal a significant
impact on the RV measurements.

2.1.3 10.7 cm Radio Flux

The 10.7 cm radio flux (2800 MHz) or radio flux, is a measure of solar radio emission
originating from the Sun’s chromosphere and corona. The overall level of solar
activity including sunspots and active regions influences this emission. It is often
used to monitor the solar cycle and is one of the most widely used indicators of solar
activity (Tapping, 2013).

The radio flux data used in this study were obtained from the Canadian Space
Weather Forecast Center. The flux measurements are usually taken three times
daily by the Dominion Radio Astrophysical Observatory (DRAO). From March to
October, measurements are made at 1700, 2000 (local noon), and 2300 universal
time (UT) while for the rest of the year, they are made at 1800, 2000, and 2200 UT.
The values are then averaged to obtain the daily observed value.

However, this value is modulated by both solar activity and the changing distance
between the Earth and Sun, therefore an adjusted value is provided after correcting
for variations in the Earth-Sun distance. This adjusted value of the 10.7 cm radio
flux (Adj flux) was used for this analysis and is given in solar flux units (1 sfu =
10−22 Wm−2 Hz−1).

Figure 2.3: Time series for 10.7 cm radio flux
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As mentioned, the radio flux is a good indicator of ionization levels in the solar
corona with more active regions and increased solar activity generally leading to
higher values. It also follows the solar cycle closely making it particularly useful for
studying the long-term trends of solar activity (Covington, 1969). For this study,
however, variations in the radio flux can indicate changes in the solar atmosphere’s
thermal and non-thermal emission processes that can affect the behavior and for-
mation of spectral lines, potentially introducing variability in the RV measurements
(Haywood et al., 2014). Greater magnetic activity which can lead to distortions in
the RV signal due to suppression of convective blueshift in active regions, is usually
associated with an increase in radio flux values (Dumusque et al., 2015).

Figure 2.3 shows the 10.7 cm radio flux time series. Similar to the Day SSnum,
we observe a decrease in radio flux activity as we approach the solar minimum.
However, we also observe a spike in radio flux similar to that seen in the solar flare
index.

2.1.4 Mg II index

The Mg II index (MGII In) comes from the emission in the core of the Magnesium
II (Mg II) h and k lines around 280 nm and is a measure of solar ultraviolet (UV)
radiation. The Mg II index serves as a valuable proxy for solar chromospheric
activity since this emission originates from the solar chromosphere. It is widely
used in studies of solar variability and its effects on the Earth’s atmosphere (Viereck
et al., 2001).

The Mg II index data used in this study was obtained from the Institute of En-
vironmental Physics (IUP) at the University of Bremen. It is derived from satellite
measurements of the solar UV spectrum and is calculated as the ratio between the
Mg II h and k line core flux and the nearby continuum flux. The composite Mg II
index which was used is generated by combining data from the Global Ozone Moni-
toring Experiment (GOME), the Solar Backscatter Ultraviolet Radiometer (SBUV),
and the Ozone Monitoring Instrument (OMI) among others. This ensures consistent
and continuous long-term recording of the solar UV variability (Snow et al., 2014).

As mentioned, the Mg II index is a sensitive indicator of chromospheric activity
which correlates well with other solar activity indicators such as Day SSnum and
the 10.7 cm radio flux. It can provide insights into the solar UV radiation changes
since it follows the 11-year solar cycle and has proven crucial for understanding the
effects of solar variability on the Earth’s atmosphere (Heath and Schlesinger, 1986).
Since the Mg II index can indicate changes in the chromospheric activity of the Sun,
it can prove useful in characterizing changes in the RV measurements of sun-like
stars caused by variations in their chromosphere. A high Mg II index value indicates
increased chromospheric activity and can correlate to increased RV variability which
can negatively affect exoplanet detection and characterizations (Dumusque et al.,
2015).

Similar to the other solar activity indicators, we observe a decrease in the Mg II
index as we approach the solar minimum, seen in Figure 2.4.
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Figure 2.4: Time series for the Mg II index

2.1.5 Total Solar Irradiance

Total Solar Irradiance (TSI) is a representation of the total solar radiation output
across all wavelengths. It is a measure of the solar energy received per unit area at
the top of the Earth’s atmosphere and has served as a fundamental parameter in
understanding the Earth’s climate making it crucial for climate modeling and solar
physics (Kopp et al., 2016).

The data used in this study was obtained from the Solar Radiation and Climate
Experiment (SORCE) mission, managed by the Laboratory for Atmospheric and
Space Physics (LASP) at the University of Colorado Boulder. The SORCE mission
uses the Total Irradiance Monitor (TIM) to measure the TSI with high precision and
accuracy correcting for instrument drifts, degradation, and other systematic effects.
The data is collected continuously and processed to provide average values every
6 hours along with the daily average values (Kopp and Lawrence, 2005). While a
higher cadence would allow for short-term variations to be monitored, the 24-hour
cadence was used to allow for comparison with other datasets in this study.

The TSI at 1 Astronomical Unit (AU) (TSI 1au) shows the total solar radia-
tion output at the average distance of the Earth from the Sun while the TSI at
Earth’s distance (TSI ed) provides the total solar radiation received by the Earth
at its specific distance from the Sun. The TSI ed considers the variability in solar
radiation due to Earth’s elliptical orbit (Kopp, 2019), however, for this study, the
normalized TSI 1au is used for the analysis as it provides a better representation of
the modulation of the TSI due to solar activity.

As mentioned, the TSI is a direct measure of the Sun’s total energy output,
therefore variations in the TSI can indicate changes in solar activity such as the
emergence of sunspots or faculae on the solar surface which can modulate the solar
irradiance. Changes in TSI have been linked to climate variations on Earth with
higher TSI values leading to warming and vice-versa. Understanding TSI variations
has been essential for climate studies and predicting climate trends (Lean et al.,
1992). Variations in the TSI have also been correlated to stellar activity indica-
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Figure 2.5: Time series for the TSI at 1 AU and Earth distance.

tors such as sunspots and magnetic activity which can affect RV measurements
(Dumusque et al., 2015). Changes in the TSI can alter the stellar photosphere’s
structure and temperature. This can affect the formation and behavior of spectral
lines used in RV measurements, potentially introducing variability (Haywood et al.,
2014).

As seen in Figure 2.5, the TSI at 1AU shows a general decrease as we approach the
solar minimum while the TSI at Earth distance is strongly modulated by the Earth’s
rotation around the Sun which can introduce a periodic signal in RV measurements
taken on Earth with a frequency similar to that of an orbiting planet.
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2.2 HARPS-N

High Accuracy Radial Velocity Planet Searcher (HARPS) is an echelle spectrograph
attached to the ESO 3.6-meter telescope in La Silla, Chile used to detect exoplanets
using high-accuracy RV measurements (Mayor et al., 2009). The High Accuracy Ra-
dial Velocity Planet Searcher for the Northern Hemisphere (HARPS-N) is a similar
high-precision RV instrument installed on the 3.58 m Telescopio Nazionale Galileo
(TNG) Telescope at Roque de los Muchachos Observatory in La Palma, Spain which
is also used to search for exoplanets. However, during the day, light from the solar
disk is integrated and passed to the spectrometer providing full-disk RV measure-
ments of the sun(Al Moulla et al., 2023). This method, referred to as Sun as a star
observation, allows comparisons between the full-disk RV measurements of the Sun
and higher resolution observations (Dumusque et al., 2015).

HARPS observed its first light in 2003 while HARPS-N was commissioned in
2012. The HARPS-N’s northern location also allows access to the targets of the K2
and TESS missions. While the main objective of HARPS-N has been to discover
and characterize terrestrial exoplanets by achieving long-term 1 m/s median RV
precision on V < 11-mag stars (UniversiteofGeneve, 2014), its success in observing
the Sun as a star has led to the installation of the HARPS Experiment for Light
Integrated Over the Sun (HELIOS), a solar telescope which feeds to the HARPS
instrument (information@eso.org, 2023). Each day, both instruments observe the
Sun for as long as possible while its altitude is higher than 10 degrees.

HARPS-N is a fiber-fed, cross-dispersed spectrograph with a resolving power of
R = 115000 and a spectral range of 390 nm to 690 nm. It is fed calibration and
stellar light by two fibers, the reference, and science fibers. The fiber entrance is
re-imaged onto a 4k4k CCD by the spectrograph optics, where echelle spectra of 69
orders are formed for each fiber. The spectrograph contains no moving parts and is
mounted on a nickel-plated stainless steel mount. Its temperature and pressure are
also accurately controlled to avoid spectral drifts (Phillips et al., 2016).

To obtain sub 10 cm/s calibration of the HARPS-N spectrograph, required for
detecting terrestrial exoplanets in the habitable zone of sun-like stars, a laser fre-
quency comb (LFC) based calibrator (astro-comb) is used to obtain short-term sta-
bility of less than 2 cm/s with a long-term drift of approximately 10 cm/s per day
(Phillips et al., 2016). However, it is important to note that this level of precision is
not needed for this analysis since the majority of the other data sets used will only
provide daily averages. This will be discussed further in later sections.

A custom-built solar telescope is connected to HARPS-N providing a near-
continuous stream of disk-integrated solar spectra during the day (Milbourne et al.,
2019; Dumusque et al., 2015). This instrument works with the HARPS-N spectro-
graph to observe the Sun as a star with a temporal coverage of approximately one
exposure every 5 minutes and a daily coverage of about 6 hours. The solar telescope
converts solar images into an equivalent point source using a 3” lens which feeds
an integrating sphere. The sphere scrambles all angular information allowing for
observations of the Sun as a star (Milbourne et al., 2019). Reports show that the
solar telescope captures the full disk of the Sun with a RV precision below 10 cm/s
comparable to independent SDO/HMI images Phillips et al. (2016).

The HARPS-N data used in this analysis was obtained from the Data & Analysis
Center for Exoplanets (DACE). It consists of 745 observed days between July 16,
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2015, and July 18, 2018, with a cadence of 5.5 min (5 min exposure and 30s read-
out time). This data was reduced using version 2.2.2 of the Echelle SPectrograph
Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) Data Re-
duction Software (DRS) (Dumusque et al., 2021). It is also important to note that
this data contains gaps due to various reasons such as observational constraints or
equipment maintenance which will be discussed in future sections. Table 2.4 shows
the description of the time series data obtained from the HARPS-N data set used
in this analysis.

Table 2.4: Description of the time series data obtained from the HARPS-N data set.
Name Description Unit

RV RV of the Sun in the heliocentric rest frame, corrected
for differential extinction

m s−1

RHK log(R′
HK) calcium activity index dex

SMW S Mount Wilson calcium activity index -
Bis Span Bisector span of the CCF m s−1

FWHM FWHM of the CCF, corrected for the solar ecliptic
obliquity and Earth orbit eccentricity

m s−1

Contrast Contrast of the CCF, corrected for the FWHM cor-
rection so that the equivalent width of the CCF is
conserved

%

RHK or the log(R′
HK) calcium activity index is a measure of chromospheric

activity in stars, including the Sun (Vaughan and Preston, 1980). It is derived
from the emission-line cores of the Ca II H and K spectral lines. This index is a
normalized measure that corrects for the photospheric contribution to the Ca II H
and K line emission, providing a better indication of chromospheric activity (Noyes
et al., 1984). The RHK is obtained by measuring the flux in the cores of the Ca
II H and K lines from the observed spectra. The measurements are then calibrated
against a set of standard stars with known chromospheric activity levels (Wright
et al., 2004).

The Ca II H and K lines are widely used as a proxy for magnetic activity and
rotational period of sun-like stars (Mittag et al., 2018). Dark spots and bright faculae
are formed on photospheres of late-type stars due to concentrated magnetic fields
that extend to the chromosphere causing additional nonthermal heating. This can
lead to the formation of chromospheric magnetic features which cause variability in
the Ca II H and K spectral lines (Sowmya et al., 2023). RHK can provide insights
into the magnetic activity of a star which affects the observed RV by inducing
changes in the stellar surface. Strong magnetic activity is indicated by high RHK
values and correlates to increased RV variability (Dumusque et al., 2015).

The S Mount Wilson index or SMW is the precursor of the RHK index and
another measure of chromospheric activity derived from the Mount Wilson Obser-
vatory’s long-term stellar activity monitoring program. The SMW can be quantified
by comparing the relative strength of the Ca II H and K line emission to the nearby
continuum (Martin et al., 2017). The SMW is calculated using the measured flux
in narrow bands centered on the Ca II H and K lines normalized by the flux of
two nearby reference bands and scaled using a calibration derived from the Mount
Wilson survey data (Vaughan and Preston, 1980).
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Figure 2.6: Time series for HARPS-N data set.

Unlike the RHK index, the SMW index provides a proxy for photospheric plus
chromospheric Ca II strength and also serves as an indicator of magnetic field activity
(Tinney et al., 2002). It is used to identify periods of high magnetic activity which
can affect RV measurements by inducing spectral line variations and asymmetries.

The cross-correlation function (CCF) is a mathematical tool that measures the
correlation between two spectra (observed and reference spectra) as a function of
velocity shift applied to one of the spectra. The RV of the object corresponds to
the peak of the CCF where the velocity shift allows for the observed spectra to best
match the reference spectra (Simola et al., 2019).

The shape of the CCF can be distorted by asymmetries in the spectral lines
caused by stellar activity which can affect RV measurements. The bisector span or
Bis Span (BIS SPAN) is a measure of this asymmetry (Queloz et al., 2001).

The width of the CCF measured by the full width at half maximum (FWHM)
can provide information on broadening mechanisms such as stellar rotation, macro-
turbulence, or instrumental effects (Simola et al., 2019). The FWHM is measured
by fitting a suitable function to the CCF and measuring the width of the profile at
half of its peak height.

The depth or contrast of the CCF also provides information about the stellar
activity as it indicates the sharpness and strength of the spectral lines Simola et al.
(2019). The contrast is calculated by measuring the difference between the peak
and the baseline of the CCF and then normalizing it to the baseline.

Figure 2.6 shows the time series data obtained from HARPS-N. We see the RV
time series for the Sun along with the RHK and SMW activity index time series
followed by the time series of the components of the CCF. These solar activity
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indicators can be used to understand how solar activity affects the RV measurements
of the Sun.

2.2.1 Data Preparation

It was first noted that the cadence of the data sets is different. While HARPS-N
provides a high-resolution time series with a cadence on the order of 5 minutes, the
solar indicator datasets have cadences of 1 day. Although a high temporal resolution
is very useful for classifying short-period stellar signals that can later be removed,
due to the limits of the other data sets, the daily averages of the HARPS-N RV
data were determined as seen in Figure 2.7. For this analysis, the daily averages
are sufficient since we are interested in signals that mimic Earth analogs around
solar-type stars.

Figure 2.7: Daily Averaged Time Series for HARPS-N data set.

Gaps in the data sets were also observed. This missing data can be caused by
various issues such as:

• Poor weather conditions which can affect ground-based observations.

• Scheduled instrument maintenance.

• Technical failures such as mechanical failures, software glitches, or electronic
malfunctions can lead to gaps in the data while repairs or re-calibrations are
being performed.

• Data rejection during calibration due to poor data quality.

Handling missing data is important in time series analysis since missing data
can skew results and affect the correlation analysis. Missing data in time series are
usually treated with:

• Forward or backward fill techniques which fill missing values with the previous
or the next observed value, respectively (Giobbi, 2023). These methods are
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valid when the data changes slowly over time or is assumed to remain constant
over some time. It can also be used for short gaps such as daily data where
the gap is on the order of a few days (Little and Rubin, 2019).

• Linear regression-based imputation estimates the missing data by creating a
linear model between one or more predictor (independent) variables and the
(dependent) variable with the missing values by finding a linear relationship
between them. It involves training the model on known data before applying
it to the data with the gaps. This method assumes that there is a linear
relationship between variables with no sudden shifts or discontinuities. It also
needs sufficient data for the mode to be trained (Seber and Lee, 2012).

While gaps in the data for the solar activity indicators were limited to a few days,
the HARPS-N data contained an approximate two-month gap around December
2017. This was due to damage to the fiber guiding light from the solar telescope
to the spectrometer which led to observations with very low S/N. This led to low
precisions and the data was rejected during processing (Dumusque et al., 2021).

This study used a combination of forward and backward fill methods to fill short
gaps in the solar activity indicator datasets, however for the HARPS-N data set
which contained a large gap, the linear regression-based imputation was used which
required a predictor variable without missing values. It was decided that HARPS-N
RV data simulated with SolAster described in Section 2.2.2 would be used as the
predictor variable. Section 2.2.3 describes the linear regression-based reputation in
more detail when applied to the HARPS-N dataset.

2.2.2 Simulated Sun as a star RVs: SolAster

Unfortunately, there were no space-based RV measurements of the Sun during the
observation period. However, it was possible to estimate disk-integrated RV mea-
surements from high-spatial-resolution data obtained from the Helioseismic and
Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO). SolAster is
a publicly distributed pipeline created to estimate the Sun as a star disk-integrated
RVs from high-spatial-resolution data. This tool was made to study the activity-
induced temporal variation of the Sun in great detail allowing the Sun to serve as a
proxy for understanding similar processes in other sun-like stars (Ervin et al., 2022).

The high-resolution data products provided by the SDO/HMI include dopp-
lergrams, magnetograms, and continuum filtergrams. Dopplergrams measure the
Doppler shift of the solar photospheric lines and provide information about the ve-
locity across the solar disk with a cadence of 45 seconds. Magnetograms capture the
line-of-sight magnetic flux density providing maps of the solar surface’s magnetic
field with a cadence of 45 seconds. With a similar cadence of 45 seconds, contin-
uum filtergrams provide insights into the brightness distribution across the solar
disk by providing intensity measurements in the continuum near the photospheric
absorption line. The raw HMI data are processed to correct for instrumental effects
including flat fielding, cosmic ray removal, and image alignment ensuring accurate
and consistent full disk images (Pesnell, 2012; Scherrer et al., 2012).

SolAster determines the disk-integrated RV by integrating the velocity informa-
tion from Dopplergrams over the entire solar disk. This is done by summing the
contribution from all regions of the solar disk while considering the effects of solar
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rotation and limb darkening. Next, it models the impact of magnetic activity on the
RV signal using continuum images and magnetograms. It considers the suppression
of convective blueshift in active regions as well as other magnetic effects that dis-
tort the RV measurements. The pipeline also applies corrections for foreshortening,
where regions near the solar limb appear compressed due to the projection effect,
and limb-darkening, where the solar intensity is decreased toward the limb. Ap-
plying these corrections ensures that the RV signal is an accurate representation of
the different contributions across the solar disk and that the velocity and intensity
distributions are accurately modeled across the disk Ervin et al. (2022).

While SolAster can provide simulated RV measurements with the same cadence
of SDO/HMI, 45 seconds, for this study, and due to limited time and resources, a
cadence of 1 day was used. Similar to the HARPS-N data, a high temporal resolution
would allow the capture of short-term variations in solar activity and their impact
on RV measurements, however, other data sets used in this study do not have the
luxury of such high temporal resolutions.

It should also be noted that the pipeline includes methods to reduce noise in
the RV time series such as filtering out high-frequency noise and correcting for sys-
tematic errors which can enhance the precision of the simulated RV measurements.
Other errors to consider are gaps in the simulated measurements due to missing
SDO/HMI data. If any of the three full disk images is missing or fails to download,
no calculation is performed leaving a gap in the simulated data. However, these gaps
are limited to a few days and can be easily filled using forward or backward-filling
techniques.

SolAster applies a scaling factor to the simulated SDO RV measurements to
allow for more accurate comparisons. The HARPS-N scaling factor was used to
adjust the amplitude of the RV variations, making them consistent with the scale
and sensitivity of the HARPS-N measurements. This scaling factor was obtained by
comparing the output RV measurements from SolAster to actual HARPS-N data.
Table 2.5 shows the resulting outputs of the SolAster pipeline along with a short
description and their respective units. However, only the rv model data will be used
as the predictor variable when performing the linear regression-based imputation of
the HARPS-N data.

SolAster was developed to provide a robust method for simulating RV mea-
surements from full-disk SDO images. It can be used to better understand the
relationship between RV variations and solar magnetic activity which is important
for improving the detection of Earth-like planets around sun-like stars. By analyz-
ing the convective and photometric velocity components derived from the SDO/HMI
data, SolAster allows for correlating solar magnetic activity indicators with RV vari-
ations (Ervin et al., 2022). By comparing spaced-based (SolAster) to ground-based
(HARPS-N) RV measurements, systematic differences in the HARPS-N data can be
identified and corrected leading to more accurate and reliable RV data (Kopp et al.,
2016). Figure 2.8 shows the time series for rv model data estimated from the SDO
data using SolAster.
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Table 2.5: Description of the simulated data obtained from SolAster.
Result Description Unit

date obs Observation timestamp in UT from SDO metadata. Date-Time
date jd Calculated JD from observation timestamp. JD
rv model Modeled RV variation from Doppler shifts across the solar

disk.
m/s

v quiet Velocity component from quiet Sun regions, measured from
Doppler shifts in minimal activity areas.

m/s

v disk Overall disk velocity calculated by averaging Doppler shifts
across the solar disk.

m/s

v phot Photometric velocity component from intensity variations
correlated with Doppler shifts.

m/s

v conv Convective velocity derived from plasma motion models
within the Sun’s convective zone.

m/s

f bright Filling factor for bright regions determined by segmenting
faculae and calculating their fractional area.

%

f spot Filling factor for sunspots determined by segmenting dark
regions and calculating their fractional area.

%

f Total filling factor for all observed features on the solar
disk.

%

Bobs Unsigned magnetic flux calculated from magnetogram
data, representing total magnetic field strength.

Gauss

vphot bright Photometric velocity component from bright
regions’ Doppler shifts.

m/s

vphot spot Photometric velocity component from sunspots’ Doppler
shifts.

m/s

f small Filling factor for small sunspots and faculae determined by
segmenting and measuring their fractional area.

%

f large Filling factor for large sunspots and ARs determined by
segmenting and measuring their fractional area.

%

f network Filling factor for the magnetic network determined by iden-
tifying dense magnetic field line regions.

%

f plage Filling factor for plage regions determined by segmenting
bright areas around sunspots.

%

quiet flux Magnetic flux for quiet-Sun regions calculated from mag-
netogram data.

Gauss

ar flux Magnetic flux for ARs calculated from magnetogram data. Gauss
conv flux Magnetic flux for large ARs calculated from magnetogram

data.
Gauss

pol flux Polarized magnetic flux derived from polarization analysis
of light emissions.

Gauss

pol conv flux Polarized magnetic flux from large ARs calculated from
polarization data.

Gauss

vconv quiet Convective velocity for quiet regions modeled from Doppler
measurements.

m/s

vconv large Convective velocity for large ARs modeled from Doppler
measurements.

m/s

vconv small Convective velocity for small ARs modeled from Doppler
measurements.

m/s
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Figure 2.8: Time series for rv model derived from SDO data using SolAster.

2.2.3 Linear Regression-based imputation applied to
HARPS-N data

As previously mentioned, the linear regression-based imputation was used to fill the
missing values in the HARPS-N data set. This method uses the relationship between
the predictor or reference variable, (Xref = rv model), and the target variables, y,
to predict missing values.

The target variables that contained missing data were first identified. These are
the only columns that would be subjected to the imputation process. The reference
variable is then scaled, Xscaled, to match the statistical properties (mean, µ, and
standard deviation, σ) of the target column as seen in Equation 2.3. This ensures
that the predicted values are on a comparable scale with the original data of the
target column.

Xscaled =
(
Xref − µref

)
×

σy

σref
+ µy. (2.3)

Next, a linear regression model is defined as:

y = β0 + β1X + ϵ, (2.4)

where y is the independent variable, X is the dependent variable, β0 and β1 are the
intercept and slope coefficients, and ϵ is the error term. The model is then trained
using non-missing data from the target column (y = ytrain). The corresponding
values of the scaled reference variable are treated as the dependent variable (X =
Xtrain). The model was trained on the available data by minimizing the residual
sum of squares (RSS):

RSS =
∑
i

(yi − (β0 + β1Xtrain,i))
2. (2.5)

The optimal parameters, β̂0 and β̂1 were obtained using the least squares method,
which gives:
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β̂1 =

∑
i(Xtrain,i − X̄train)(yi − ȳ)∑

i(Xtrain,i − X̄train)
2

, (2.6)

β̂0 = ȳ − β̂1X̄train. (2.7)

Once the model was fitted, the scaled reference variable was used to predict the
missing values in the target data:

ŷmissing = β̂0 + β̂1Xscaled,missing. (2.8)

Figure 2.9 compares the filled (red) and unfilled (black) HARPS-N data where we
see all gaps in the data are filled. It is important to note that the underlying
assumption of the linear regression-based imputation is that the reference variable
and the target variables share a linear relationship. This assumption is justified
since the reference variable used was simulated HARPS-N data derived from SDO
images, however, further statistical tests will be performed to observe the effects of
filling all datasets.

Figure 2.9: Time series comparing filled and unfilled HARPS-N data.
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2.2.4 Comparing data before and after filling gaps

As previously mentioned, incorrectly filling the gaps in the data can lead to biases
in the analysis performed. It is therefore important to check if filling in the missing
values has affected the descriptive statistics of the data sets. Figure 2.9 provides
a visual idea of how much data was filled in the HARPS-N dataset. Figure 2.10
compares the filled and unfilled data for the other solar indicators. It was observed
that the flare index, radio flux, Mg II index, and TSI had little to no gaps in the
data while the Day SSnum had a few small gaps which needed to be filled.

Figure 2.10: Time series comparing filled and unfilled solar indicator data.

Tables 2.6 and 2.7 provide the descriptive statistics of the unfilled and filled
data respectively. Boxplots (Figure 2.11) for each solar indicator were then plotted
to help visualize this information. From these plots, we see no significant change
between the means of the unfilled and filled data. Histograms (Figure 2.12) were
also prepared which showed no significant change in the distribution of the data for
each solar indicator. This shows that the filled data is a good representation of the
observed data and can be used for our analysis as described in chapter 3.
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Table 2.6: Descriptive statistics of unfilled data sets.
Unfilled Data

Indicators count mean std min 25% 50% 75% max

RV m 630 0.03 1.96 -4.67 -1.32 -0.12 1.18 6.28
RHK 630 0 0.01 -0.04 -0.01 0 0.01 0.03
SMW 630 0.16 0 0.16 0.16 0.16 0.16 0.17
BIS SPAN 630 -91.79 1.94 -95.94 -93.2 -92.05 -90.56 -84.64
FWHM 630 7784.96 2.04 7780.47 7783.57 7784.62 7786.08 7795.17
CON 630 60.13 0.04 60.01 60.1 60.13 60.15 60.22
Day SSnum 995 31.18 28.17 0 11 25 49 169
Flare Index 1090 1.07 4.92 0 0 0 0.52 107.54
Adj flux 1093 84.39 15.43 64.57 72.33 79.1 93.97 157.03
MGII In 1091 0.15 0 0.15 0.15 0.15 0.16 0.16
TSI 1au 1093 1360.91 0.29 1359.39 1360.73 1360.84 1361.05 1361.92

Table 2.7: Descriptive statistics of filled data sets.
Filled Data

Indicators count mean std min 25% 50% 75% max

RV m 1093 0.02 1.92 -4.67 -1.33 -0.31 1.04 8.06
RHK 1093 0 0.01 -0.04 -0.01 0 0.01 0.05
SMW 1093 0.16 0 0.16 0.16 0.16 0.16 0.17
BIS SPAN 1093 -91.79 1.8 -95.94 -93.06 -92.16 -90.83 -84.64
FWHM 1093 7784.96 1.73 7780.47 7783.91 7784.62 7785.77 7795.17
CON 1093 60.13 0.04 59.96 60.1 60.13 60.15 60.22
Day SSnum 1093 32.03 27.97 0 12 26 50 169
Flare Index 1093 1.07 4.91 0 0 0 0.52 107.54
Adj flux 1093 84.39 15.43 64.57 72.33 79.1 93.97 157.03
MGII In 1093 0.15 0 0.15 0.15 0.15 0.16 0.16
TSI 1au 1093 1360.91 0.29 1359.39 1360.73 1360.84 1361.05 1361.92
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Figure 2.11: Boxplots showing comparison of unfilled and filled solar indicators.
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Figure 2.12: Histograms comparing unfilled and filled solar indicators.
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Chapter 3

Analysis and Results

3.1 Correlation of Solar Indicators

To examine the relationships between the solar indicators, a simple correlation ma-
trix was computed using Pearson’s correlation coefficient to measure the linear re-
lationship between each pair of variables:

rxy =

∑
(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2(yi − ȳ)2

, (3.1)

where xi and yi are individual sample points, and x̄ and ȳ are the sample means.
The correlation matrix was visualized using a heat map as seen in Figure 3.1.

From this, we see that the RV measurements have strong correlations with the RHK
index, SMW index, Bis Span, 10.7 cm radio flux, and the Mg II index. It also has
a strong anti-correlation with the contrast and weak correlations with the FWHM,
daily sunspot number, and total solar irradiance.

Of all the solar indicators tested, the flare index is the only solar activity indicator
with a poor correlation to the RV measurements. This is most likely because solar
flares are sporadic events. While they are connected to solar magnetic activity, their
occurrences are sudden, intense, and less frequent and do not contribute significantly
to the RV signal of their host stars.

Figure 3.2 shows a scatter plot matrix of the solar indicators to better visualize
their relationships. This allows for the exploration of linear and non-linear corre-
lations between indicators. Each scatter plot represents the relationship between
two indicators while the histograms along the diagonal show the distribution of the
indicators.

The HARPS RV measurements show a clear positive linear relationship with the
RHK index, SMW index, and the bisector span as expected from the correlation
matrix. This strong correlation is likely due to these indicators’ direct connection
to chromospheric and stellar activity which also affects the RV measurements.

The FWHM and MG II index also show a clear positive linear relationship,
however, the data points are more dispersed compared to the previously mentioned
indicators. This may suggest that the broadening of the spectral lines caused by
rotation and macroturbulence effects directly affect the RV measurements, however,
there may be some additional variability that is not immediately clear.

The strong negative linear relationship between the RV measurements and the
contrast stands out with lower contrast values being associated with larger RVs.
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Figure 3.1: Heat map visualizing the correlation matrix of solar indicators.

As previously mentioned, the contrast indicates the sharpness and strength of the
spectral lines. It makes sense that as the RV measurements increase, the sharpness
of the spectral lines would appear to decrease due to the shifting of the spectral
lines.

The relationship between the RV measurements and the daily sunspot numbers,
the 10.7 cm radio flux, and the TSI are more dispersed showing weaker and more
scattered patterns. This indicates that these solar indicators may have less influence
on the RV measurements. It is also possible that the relationship may be more
complex and not strictly linear.

Finally, the flare index data was observed to be slightly dispersed about the
0 value with no clear linear relationship with the RV or any of the other solar
indicators. This is again most likely due to the sporadic nature of solar flares and
its complex relationship with the solar magnetic field.

Combining these relationships with the distribution of each solar indicator (his-
tograms) in the sample can provide more insight into the impact of the solar in-
dicators on the RV measurements. The histogram of the RV measurements shows
a relatively symmetric distribution centered on zero. This is because the RV sig-
nal is dominated by stellar rotation. Similarly, the bisector span has a relatively
symmetric distribution showing no overall asymmetry in this data set.
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Figure 3.2: Scatter plot matrix of solar indicators with histograms along the diago-
nal.
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The distribution of data for the RHK and SMW are both skewed toward lower
values. This suggests that low to moderate levels of chromospheric activity are
common in this dataset. Combined with the strong correlations to the RV mea-
surements, it implies that periods of increased activity, while less frequent, have
significant impacts on the RV signal. Although they have weaker correlations with
the RV measurements, the MG II indicator, 10.7 cm radio flux, daily sunspot num-
bers, and FWHM histograms are all skewed to lower measurements. The increased
frequency of lower values may be attributed to data collection during the Sun’s
approach to solar minimum.

This analysis shows that the solar flare index was the only solar activity indi-
cator tested without a significant linear relationship with the HARPS-N RV mea-
surements. It is suggested that the remaining solar activity indicators can serve as
proxies of stellar activity and be used to model the stellar RV of sun-like stars. This
hypothesis is further discussed and tested in Section 3.2.

3.2 Modeling Solar RVs using Solar Proxies

As stated in the previous section, it was hypothesized that the solar activity indi-
cators with good correlations can be used as proxies of stellar activity to model the
stellar RV of sun-like stars.

To test this hypothesis, three groups of solar indicators were first defined to
evaluate their ability to predict the HARPS-N RV measurements using a linear
regression analysis:

• HARPS-N Indicators: The set of indicators usually provided with the HARPS-
N data comprised of RHK, SMW , Bis Span, FWHM, and contrast (Dumusque
et al., 2015),

• Good Indicators: This includes all the tested solar indicators that correlate well
with the RV measurements such as RHK, SMW , Bis Span, FWHM, contrast,
Day SSnum, 10.7 cm radio flux, Mg II index, and the normalized TSI,

• Suggested Indicators: The group contained the tested solar indicators which
can also be observed for other sun-like stars including RHK, SMW , Bis Span,
FWHM, contrast, 10.7 cm radio flux, Mg II index, and the normalized TSI.

The HARPS-N RV dataset was then randomly split 80/20 into training and
testing sets. The training set was used to train the linear regression model while
the testing set was used to evaluate the model’s performance.

The linear regression model used is expressed as:

y = β0 + β1X1 + β2X2 + ...+ βnXn + ϵ, (3.2)

where y is the RV measurements, X1, X2, ..., Xn are the selected solar indicators, β0,
β1, ..., βn are the regression coefficients, and ϵ is the error term. This model assumes
a linear relationship between the solar indicators and the RV measurements.

The mean squared error (MSE), the R-squared (R2) statistic, and the moments
of the residuals between the observed and predicted data were then estimated to
evaluate the performance of the model. The performance metrics for each model
can be seen in Table 3.1.
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The MSE was calculated using Equation 3.3 and measures the averaged squared
difference between the observed and predicted values with a lower value indicating a
better model performance (Shumway and Stoffer, 2006; Kedem and Fokianos, 2005):

MSE =
1

n

n∑
i=1

(ym − yp)
2, (3.3)

where ym and yp are the measured and predicted RV values.
The R2 statistic given by 3.4 measures the proportion or variance in the depen-

dent variable that is predictable from the independent variables with a R2 value
closer to 1 indicating a better fit (Shumway and Stoffer, 2006; Kedem and Fokianos,
2005).

R2 = 1−
∑n

i=1(ym − yp)
2∑n

i=1(ym − ȳ)2
, (3.4)

where ȳ is the mean of the measured values.
The moments of the residuals include the mean (1st moment), standard devia-

tion (2nd moment), skewness (3rd moment), and kurtosis (4th moment). The mean
of the residuals (µr) provides the average error, given by Equation 3.5, and should
be zero if there are no systematic biases in the predictions. Equation 3.6 gives
the standard deviation of residuals (σr) which measures the spread of the residu-
als around the mean. A smaller value represents more consistent predictions and
less variability in the prediction errors. The skewness is a measure of the asym-
metry of the distribution of residuals with 0 representing a symmetric distribution
while positive or negative values indicate that the residuals were more frequently
underpredicted or overpredicted respectively. The skewness is given by Equation
3.7. Finally, Kurtosis measures the “tailedness” of the distribution compared to a
normal distribution. Estimated using Equation 3.8, a positive kurtosis suggests the
presence of outliers while a negative kurtosis suggests fewer extreme residuals than
a normal distribution (Hazelton, 2011).

µr =
1

n

n∑
i=1

ri, (3.5)

where ri = ym − yp,

σr =

√√√√ 1

n

n∑
i=1

(ri − µr)2, (3.6)

Skewness =
1

n

n∑
i=1

(
ri − µr

σr

)3

, (3.7)

Kurtosis =
1

n

n∑
i=1

(
ri − µr

σr

)4

− 3. (3.8)
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Table 3.1: Table showing model’s performance metrics using different solar indicator
groups.

Solar Indicator Group MSE R2 Moments of the Residuals
µr σr Skewness Kurtosis

HARPS-N 0.65 0.80 0.00 0.83 0.21 2.68
Good 0.58 0.82 0.00 0.80 0.10 2.12
Suggested 0.58 0.82 0.00 0.80 0.10 2.10

Figure 3.3 visually compares predicted and measured RV data of different models
using scatter plots with a ”perfect fit” line showing the ideal scenario where the
models accurately predict the measured data.

The time series plots of the predicted and measured RV data for different models
were also visually compared in Figure 3.4.

From Table 3.1, it is observed that the MSE for the HARPS-N indicator model
is slightly higher (0.65) than the good and suggested indicator models (0.58), sug-
gesting an increase in the predictive performance of the linear model when the Daily
sunspot number, 10.7 cm radio flux, Mg II index, and the normalized TSI are in-
cluded in the model. The R2 values support this with both Good and Suggested
indicator models achieving a R2 of 0.82 which is a small improvement from the
HARPS-N indicator model R2 of 0.80.

The residual means of all three models are zero (to two decimal places) indicating
the lack of systematic bias in their predictions. The standard deviation of the
residuals for the HARPS-N indicator models is 0.83 with the models for good and
suggested indicators having a slightly smaller σr of 0.8 suggesting that the new
indicators improve the variability of the model predictions. This means the predicted
points are less dispersed as seen when comparing Figure 3.3a to Figures 3.3b and
3.3c.

The skewness values of the good and suggested indicator models were both 0.1
which is an improvement from the HARPS-N indicator model with a positive skew-
ness of 0.21. This indicates that all models tested tended to underpredict RV values
which can be seen in Figures 3.4a to 3.4c. However, including the new indicators
reduced the frequency of underpredicted values.

Kurtosis was the only moment that showed any significant difference between the
good and suggested indicator models. As previously mentioned, a higher kurtosis
value indicates a greater presence of extreme residuals or outliers in that model.
Therefore, the HARPS-N indicator model produced the largest number of outliers
with a kurtosis value of 2.68, followed by the good and then suggested indicator
models with kurtosis values of 2.12 and 2.10 respectively.

In summary, it was observed that including the additional solar activity indica-
tors in the linear regression model provided more accurate and consistent predictions
of RV variations. They also improve the reliability of the models by generating fewer
outliers and a more balanced error distribution.
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(a) HARPS-N indicators.

(b) Good indicators.

(c) Suggested indicators.

Figure 3.3: Scatter plots of predicted vs measured RV data for various solar indica-
tors groups.
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(a) HARPS-N indicators.

(b) Good indicators.

(c) Suggested indicators.

Figure 3.4: Time series comparing predicted vs measured RV data for various solar
indicators groups.
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Chapter 4

Discussion

The main objective of this thesis was to explore the influence of stellar activity on
RV signals, focusing on how stellar activity indicators can be used to model stellar
noise. Using the Sun as a proxy for other sun-like stars, an attempt was made
to improve the modeling of the solar activity signal using solar activity indicators.
The analysis revealed several important results, which are discussed in the following
sections.

4.1 Main Results and Their Implications

The complex interplay between stellar magnetic activity and RV measurements was
highlighted by the correlations between solar activity indicators and the RV signals
observed in this study. Several solar activity indicators were tested leading to various
implications for their use in stellar activity modeling based on their varying levels
of correlation with the RV measurements.

Particularly, the chromospheric activity indices such as RHK and SMW had
strong positive correlations with the RV measurements. This is consistent with
previous studies which have identified chromospheric activity as a major contributor
to RV variations (Dumusque et al., 2015; Meunier et al., 2010). Mittag et al. (2018)
suggests that the calcium activity index, RHK, in particular, can serve as a reliable
proxy for magnetic activity in sun-like stars which is supported by the strong positive
correlation with the RV measurements observed in this study.

The daily sunspot number and the 10.7 cm radio flux also had good correla-
tions with the RV measurements. This also supports earlier research which shows
that sunspots affect convective motions and hence modulate RV measurements by
suppressing convective blueshift in active regions (Dumusque et al., 2014; Haywood
et al., 2014). Similarly, the 10.7 cm radio flux is a measure of solar radio emission
originating from the chromosphere and corona and follows the solar cycle closely
and can therefore serve as an effective proxy for solar magnetic activity (Tapping,
2013). It is important to note, that it is much more difficult to observe starspots
on sun-like stars, thus, sunspot numbers were not included in the suggested activity
indicators.

The Mg II index, which measures solar UV radiation, also has a positive correla-
tion with the RV measurements. This index has been shown to track chromospheric
activity similar to RHK and has been used widely in solar variability studies (Heath
and Schlesinger, 1986). The positive correlation supports the use of the Mg II index
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as a proxy for stellar activity in sun-like stars, particularly when high-resolution UV
data is available.

The TSI showed a weaker correlation compared to the chromospheric indicators.
While it is modulated by both sunspots and faculae, it appears to have a more subtle
effect on RV measurements (Kopp et al., 2016). However, the TSI is still important
for understanding the overall energy output of the Sun and can potentially have
indirect effects on the RV, therefore it can still be considered as a proxy for stellar
activity and used to model stellar RV.

In contrast, a poor correlation was observed between the solar flare index and the
RV variations. While solar flares are energetic and impactful in the short term, they
appear to have less influence on the long-term RV signal. This can be accounted for
by the short-lived and sporadic nature of solar flares, which have a lower contribution
to the overall magnetic activity cycle compared to more persistent phenomena such
as sunspots (Emslie et al., 2012). While solar flare activity is important for space
weather, their limited impact on RV signals makes them less relevant as proxies in
RV-based exoplanet searches.

The observations of this analysis further support the importance of using multiple
stellar activity indicators to model stellar activity. The strong correlations observed
for indicators such as RHK, SMW , Bisector span, FWHM, Contrast, 10.7 cm radio
flux, Mg II index, and the normalized TSI support the potential of using these
indicators in modeling stellar RV signals, thereby filtering noise caused by stellar
activity when searching for exoplanets around sun-like stars.

4.2 Methodological Considerations

Linear regression-based imputation described in section 2.2.3 was one of the key
methodological approaches used in this study to address the gaps in the HARPS-N
data. The accuracy of this method was tested by comparing the statistical properties
of the data before and after the imputation. While the results of these tests showed
no significant change, the simulated RV data from the SolAster pipeline (Ervin et al.,
2022) may contain uncertainties that were not considered. While the simulated
data was effective in filling gaps, it may also contain its own limitations regarding
assumptions about solar magnetic activity and its effects on RV. One way to avoid
this uncertainty would be to utilize analysis methods that are not sensitive to gaps in
the data such as periodogram-based analysis. One such example is briefly discussed
in Appendix A

The relatively high R2 values highlighted the success of using the linear regression
models described in section 3.2 to predict RV variations based on solar activity
indicators. However, it is important to note that this method is inherently limited
in the ability to capture the full complexity of the relationships between solar activity
and RV signals. Linear models cannot account for the non-linear interactions such
as those caused by the interplay of different magnetic phenomena (Lanza et al.,
2016). More advanced modeling techniques, such as machine learning can be more
beneficial in capturing these complex dynamics (Haywood et al., 2014).
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4.3 Broader Implications for Exoplanet Research

The outcomes of this research have several broad implications for exoplanet research.
Specifically for improving the reliability and accuracy of RV methods for detecting
Earth-like exoplanets around sun-like stars. The need for careful treatment of stellar
noise in exoplanet research is highlighted by the correlations between solar activ-
ity indicators and the RV measurements in this study. This section discusses the
implications of these results, their impact on current exoplanet detection methods,
ongoing research, and future prospects.

4.3.1 Enhancing the Precision of RV Measurements

As previously mentioned, one of the major challenges of the RV method of exoplanet
detection is differentiating between stellar-induced signals and planetary signals.
This study highlights the idea that solar activity indicators such as RHK, Mg II, and
the TSI among others, can be used effectively to model the RV measurements due to
stellar activity. This is important for improving the ability to detect smaller, Earth-
like exoplanets, which are usually hidden by the stellar activity signal (Meunier and
Lagrange, 2013).

Advancements in instrumentation, such as the ESPRESSO spectrograph, can
reach sub-meter-per-second precision, a significant improvement to RV measure-
ments (Pepe et al., 2021). However, stellar activity noise is still dominant, even
with these improvements. Including more solar activity proxies in the analysis, can
help further reduce this noise, allowing for the detection of planets with longer or-
bital periods and lower masses, typically found in the habitable zones of their host
stars (Dumusque et al., 2021).

Using the RV method alongside other methods such as the transit photometry
method can also enhance the precision of exoplanet detection. The precise determi-
nation of planetary masses and radii is accomplished by combining RV data with
transit observations from missions such as the Transiting Exoplanet Survey Satellite
(TESS) (Chontos et al., 2022; Huang et al., 2018). Similarly, using stellar proxies to
correct for stellar activity can improve the reliability of RV measurements and thus
a more powerful complement to transit photometry methods, particularly for non-
transiting planets that cannot be detected with photometry alone (Rajpaul et al.,
2020, 2015).

4.3.2 Expanding Applications to Other Stellar Types

This study focused on using the Sun as a proxy for sun-like stars, however, the
methods applied here can also be used for a broader range of stellar types. Smaller,
cooler, M-dwarf stars which are more magnetically active than sun-like stars, are
ideal targets for exoplanet searches due to the increased likelihood of detecting
habitable planets around them and their prevalence in the galaxy (Bentley, 2021).
As previously mentioned, this high level of magnetic activity can pose challenges
for RV measurements. Applying the techniques used in this study to M-dwarfs can
help disentangle stellar activity-induced RV signals from actual planetary signals,
thus improving the accuracy of exoplanet detections around M-dwarfs (Robertson
et al., 2014).
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Future missions such as the PLATO mission, which will search for exoplanets
around a variety of stellar types, will also benefit from improved stellar activity
models. PLATO’s broad mission to study stellar variability, as well as its focus on
bright sun-like stars provides an opportunity to test the techniques developed in this
study to a larger sample of stars (Rauer et al., 2014). PLATO aims to improve the
understanding of planetary system architectures and identify more Earth-like planets
in habitable zones by refining the detection of planetary signals among stellar noise.

4.3.3 Implications for Habitable Zone Exoplanet Searches

Another major objective of exoplanet research involves the search for exoplanets
in the habitable zone where liquid water could exist. However, due to their faint
signals and long orbital periods, high-precision measurements over long periods are
needed for detection. Using solar activity indicators to model and correct for stellar
activity as seen in this study can potentially improve the likelihood of detecting these
habitable zone planets, particularly those around sun-like stars where the potential
for habitability is the highest.

Better understanding and modeling of RV signals of stellar magnetic cycles can
be achieved using indicators such as RHK and Mg II indices and used to refine RV
measurements of Earth analogs, which can be obscured by stellar activity cycles, and
increase the possibility of detecting small, potentially habitable planets (Meunier
and Lagrange, 2019).

The ability to correct for stellar noise will be critical as observation precision
improves, to confirm and access the potential habitability of habitable zone exo-
planets. The importance of improving RV techniques to detect these planets is
emphasized by the discovery of habitable zone planets such as Proxima Centauri b
(Anglada-Escudé et al., 2016).

Additionally, the stellar activity indicators discussed in this research are not
only important for mitigating stellar noise but can also provide valuable information
about the habitability of exoplanets orbiting sun-like stars since magnetic field driven
stellar activity plays an important role in determining the habitability of exoplanets.

Intense stellar flares and CMEs, which are linked to indicators such as the Mg II
index and the 10.7 cm radio flux, have been shown to strip atmospheres from planets,
especially those without strong magnetic fields. This can lead to atmospheric erosion
and loss of surface water and volatiles which are important for habitability (Tarter
et al., 2007; Lammer et al., 2007).

The Mg II index also serves as an indicator of solar UV radiation which can be
harmful to planetary habitability. Molecules in a planet’s atmosphere can be broken
down by high levels of UV radiation, depleting valuable protective layers such as
ozone, thus leaving the surface vulnerable to harmful radiation (Segura et al., 2010).
This can also alter the atmospheric chemistry of planets orbiting active stars leading
to difficulties for the development or persistence of life.

Moreover, stellar activity cycles, similar to the Sun’s 11-year cycle, can also lead
to long-term changes in planetary climates. Variability in TSI measurements of sun-
like stars can provide information on the changes in stellar output which can lead
to periods of warming or cooling which can affect a planet’s capacity to maintain
stable, life-supporting conditions Nandy et al. (2021).

While this analysis is focused on the mitigation of stellar noise, it is also impor-
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tant to note the significance of solar activity indicators in determining exoplanet
habitability.

4.4 Limitations and Future Directions

While this study has shown the potential of using solar activity indicators as prox-
ies for stellar activity, several limitations should be acknowledged. As mentioned
in section 4.2, a linear regression-based imputation was used to fill gaps in the
HARPS-N data. While this is necessary for a continuous time series, it can intro-
duce uncertainties that may affect the final analysis. It may be useful to consider
periodogram-based analysis techniques as discussed in Appendix A which are not
sensitive to gaps in the data so to avoid introducing unnecessary uncertainties. The
study should also be expanded to include other sun-like stars to validate these meth-
ods on a broader range of stellar systems.

The linear regression approach, while effective, may not capture the full com-
plexity of the relationships between solar activity and the RV signals, particularly
with long-term phenomena such as magnetic cycles (Lanza et al., 2016). Future re-
search should aim to incorporate non-linear techniques to improve the models used
to predict RV variations. As previously mentioned, machine learning algorithms
can model complex non-linear relationships between solar activity indicators and
RV measurements more effectively than linear models (Jones et al., 2022). There
is therefore great potential to further reduce stellar noise by using machine learn-
ing techniques in the analysis of RV data. Recent studies by Perger et al. (2023)
and de Beurs et al. (2022) have shown that machine learning techniques can im-
prove precision RV measurements by predicting and removing RV variations due to
stellar activity. Further development of machine learning techniques could improve
how stellar activity noise is removed from RV measurements, thus enhancing the
detection of small exoplanets.

Additionally, the next generation of spectrographs will push the limits of RV pre-
cision to detect Earth-like exoplanets. Spectrographs being planned for the Thirty
Meter Telescope (TMT) and the Extremely Large Telescope (ELT) will aim for pre-
cisions on the order of centimeters per second (Larkin et al., 2016; Jurgenson et al.,
2016). As these new spectrographs come online, techniques to mitigate stellar noise
need to be developed using more comprehensive methods.

Finally, space-based RV measurements such as those from the upcoming PLATO
mission should be integrated into the analysis. The higher precision data with fewer
observation constraints will allow for a more comprehensive review of the impact of
stellar activity on RV signals and further improve the accuracy of the RV method
(Rauer et al., 2014).
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Chapter 5

Conclusion

This thesis focused on the influence of solar activity on RV measurements by utilizing
the Sun as a star approach, where the Sun serves as a proxy for understanding
stellar activity in sun-like stars. Using the correlations between various solar activity
indicators and RV measurements, this study aimed to investigate the influence of
stellar activity features on RV signals using the Sun as a star approach. This chapter
summarizes the main findings from my Master’s thesis work.

One of the main results was significant correlations identified between solar RV
measurements and several solar activity indicators such as log(R′

HK) index, SMW ,
sunspot number, 10.7 cm radio flux, Mg II index, along with cross-correlation metrics
such as the bisector span, FWHM, and contrast. These indicators, closely tied to
solar magnetic activity, were found to reflect variations in RVmeasurements strongly,
making them good stellar indicators to use for mitigating stellar noise in RV data.

Conversely, the solar flare index was found to have a poor correlation with the
RV measurements suggesting no clear linear relationship between them. This can
be attributed to the sporadic nature of solar flares which contribute less to stellar-
induced noise.

This thesis also demonstrated the effectiveness of using a multi-proxy approach to
increase accuracy when modeling stellar activity. Increasing the range of indicators
in the HARPS-N dataset to include data such as the 10.7 cm radio flux and Mg
II index was found to improve models of stellar noise. This improved multi-proxy
method increased the accuracy and reliability of models used to predict solar activity
and remove stellar noise which can enhance the precision of exoplanet searches.

The results of the internship, discussed in Appendix A, showed that time series
detrending techniques and the Generalized Lomb-Scargle periodogram were effec-
tive at removing stellar activity trends and identifying significant periodicities in
RV measurements. These techniques allowed for the isolation of planetary signals
from stellar noise thereby helping to identify periodicities associated with planetary
signals.

This research has broader implications that extend beyond the study of our
Sun. The methods developed here can be applied to other sun-like stars, providing
improved methods to disentangle stellar noise from planetary signals. This can
enhance the potential for detecting Earth-like exoplanets in the habitable zones of
their host stars. The indicators analyzed such as the Mg II index and TSI can
also provide information on the UV output and variability in the stellar output,
respectively, which be useful in determining the potential habitability of exoplanets.
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Overall, the results highlight the need for careful consideration of stellar ac-
tivity when analyzing RV data, particularly when searching for small, Earth-like
exoplanets, where stellar noise can easily hide planetary signals. This research also
highlights the importance of a multi-proxy approach in stellar activity modeling,
demonstrating that combining different stellar activity indicators can improve the
accuracy of corrections for stellar noise, therefore improving the reliability of exo-
planet detections. The methods highlighted in this study can be applied to other
sun-like stars to help remove the effects of stellar activity in RV measurements and
increase the likelihood of detecting Earth-like planets in the habitable zone.

In conclusion, this thesis contributes to the ongoing effort to refine RV methods
for exoplanet detection by improving the understanding of how stellar activity affects
RV measurements. Using the Sun as a test case, this research provides valuable
insights that can be applied to other sun-like stars, ultimately advancing the ability
to detect and characterize Earth-like exoplanets in the habitable zone.
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Appendix A

Internship

In preparation for this thesis, an internship was carried out to become familiar
with the HARPS-N Sun as a star RV data and to explore some of the techniques
used to analyze time series data. It was decided that this aim could be achieved
by reproducing some of the results of the paper titled “Stellar signal components
seen in HARPS and HARPS-N solar radial velocities.” by Al Moulla et al. (2023).
The internship focused on periodogram-based analysis techniques working in the
frequency domain while this study, focused on linear regression techniques working in
the time domain. While very different, the analysis performed during the internship
provided insight into the HARPS-N Sun as a star RV data, and how the data
could be manipulated. It also provided a contrasting analysis method that could be
compared to the linear regression methods used in this study. The following sections
provide an overview of the attempt to reproduce some of the results by Al Moulla
et al. (2023) and other exercises performed as part of the internship.

A.1 Internship Data

This internship utilized data from both the HARPS and HARPS-N instruments
introduced in section 2.2. Table A.1 shows a comparison between the properties of
the HARPS and HARPS-N data (Al Moulla et al., 2023). The key difference between
the two data sets is the cadences. HARPS observes the Sun every minute while
HARPS-N observes the Sun every 5.5 minutes which does not detect the p-mode
oscillations of the Sun. Additionally, (Al Moulla et al., 2023) also reports that the
HARPS-N data was reduced with the recent ESPRESSO data reduction software
while HARPS was not which may be responsible for the significant discrepancy
between the average daily rms values between the data sets.

Table A.1: Comparison of properties of HARPS and HARPS-N data.
Properties HARPS (HELIOS) HARPS-N

Observed days 376 745
Observation Period 08/09/2018 to 20/03/2020 16/07/2015 - 15/07/2018
Cadence 1 min 5.5 min
Exposure Time 0.5 min 5 min
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The detrended HARPS data was obtained from Al Moulla et al. (2023) while
the HARPS-N data was obtained from DACE as mentioned in section 2.2. Figure
A.1 shows a side-by-side comparison of the HARPS and HARPS-N RV time series.

Figure A.1: Side-by-side comparison of HARPS and HARPS-N RV time series.

A.2 Time-series Detrending

When preparing the data for this analysis, the first step was to remove unwanted
trends using time series detrending. This technique helps eliminate systematic effects
or other trends of a specific frequency, allowing for clearer identification of planetary
signals. As Hippke et al. (2019) explains, there are numerous methods available for
detrending time series data, each with its strengths and limitations. The HARPS
RV data obtained has already been detrended using a mean over 1 day. (Al Moulla
et al., 2023) used a 100-day rolling mean to detrend the HARPS-N RV data, however,
this result was not successfully reproduced. Instead, the Wotan python package was
used to detrend the HARPS-N data using the Savitzky-Golay (savgol) filter.

The savgol filter is a popular technique for smoothing time series data. It works
by fitting a polynomial of a specified degree to a subset (or window) of data points,
using the method of least squares. The window then slides through the entire
dataset, and the fitted polynomial is evaluated at each point within the window. The
central data point of each window is replaced by the value of the fitted polynomial
at that position, resulting in a smoothed time series (Gallagher, 2020; Savitzky and
Golay, 1964).

For each window of data, a polynomial, y(x), of degree, p, is fitted to the data
points:

y(x) = a0 + a1x+ a2x
2 + ...+ apx

p, (A.1)
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where ai are the coefficients of the polynomial. Once the polynomial is fitted to the
data within the window of size N , it is evaluated at the central point of the window
giving the smoothed value at the central point, ysmoothed(xc):

ysmoothed(xc) = a0 + a1xc + a2x
2
c + ...+ apx

p
c . (A.2)

The choice of polynomial degree and window size are important. A higher degree
polynomial allows for a closer fit to the data within the window which can capture
more complex variations but can also capture more noise. A lower-degree polyno-
mial, however, results in a smoother trend but can miss finer details. Similarly,
a larger window size captures broader trends but risks over-smoothening, while a
smaller window size can be overly sensitive to noise but can preserve more detailed
structures.

For this analysis, the goal of the time-series detrending was to remove the long-
term or low-frequency trend which would correspond to the 11-year magnetic activity
cycle and instrumental long-term drifts (Al Moulla et al., 2023). Therefore, the
savgol filter was applied to the HARPS-N data with a polynomial degree of 1 and
different window lengths (51,501,5001 data points). The resulting trend line, <RV>,
is then subtracted from the RV data. Figure A.2 shows the results of the HARPS-N
time series detrending. As expected, the larger window length successfully captured
the long-term trend with minimal effect on the stellar variations.

Figure A.2: Resulting trend lines (left) and detrended HARPS-N data (right) for
window lengths 51, 501, 5001 (blue, green, and red respectively) overlaid on the
HARPS-N time series (black)

A.3 Periodogram Analysis

As previously mentioned, due to the gaps in the HARPS-N data, it may be more
favorable to use a periodogram-based method to analyze the data. When working
with RV measurements for exoplanet detection, it is also often necessary to analyze
the periodicities within the data to detect signals that could indicate the presence of
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exoplanets. In many cases, however, traditional discrete Fourier transform (DFT)
methods are not suitable due to gaps in the data or irregular sampling. For ir-
regularly sampled data, the General Lomb-Scargle (GLS) periodogram provides a
powerful alternative for determining the power spectrum density (PSD) of the time
series (Zechmeister and Kürster, 2009).

The GLS periodogram identifies periodic signals in unevenly spaced observations
by fitting a model composed of a linear combination of sinusoids and a constant offset
which can be expressed by Equation A.3:

v(t) = Acos(2πft) +Bsin(2πft) + C, (A.3)

where v(t) is the RV data at time t, f is the frequency, A and B are the amplitudes
of the cosine and sine components, and C is the constant offset.

The GLS periodogram aims to minimize the residuals between the observed data
and this sinusoidal model by varying the frequency f and determining the optimal
values of A, B, and C that provide the best fit. The periodogram then computes
the power at each frequency, where the power is defined as the reduction in the sum
of the squared residuals when the model is applied compared to a constant model
as seen in Equation A.4:

P (f) =
1

2

(
(
∑

iwi(vi − C)cos(2πfti))
2∑

iwicos
2(2πfti)

+
(
∑

iwi(vi − C)sin(2πfti))
2∑

iwisin
2(2πfti)

)
, (A.4)

where P (f) is the power at frequency f , and wi are the weights associated with each
data point vi at time ti.

The velocity power spectrum (VPS) can then be determined using the summed
squares of the sine and cosine terms at each frequency. Finally, the velocity power
spectrum density (VPSD) is calculated by multiplying the power by the total length
of the observation run (Al Moulla et al., 2023). This provides a measure of the
strength of the periodic signal in the data as a function of frequency.

The GLS periodogram was applied to the HARPS and HARPS-N RV data using
the ‘LombScargle’ function from the Astropy library (Price-Whelan et al., 2018).
From the VPS seen in Figure A.2, we observe the p-mode oscillations in the HARPS
VPS, which has a cadence of 1 minute, while it does not appear in the HARPS-N
VPS, which has a cadence of 5.5 minutes. This is because the p-mode oscillations
of the Sun have a 5-minute period which isn’t properly sampled by the HARPS-
N observations. Granulation accounts for the slope seen in both VPS, however,
the HARPS-N VPS also contains signals due to rotation and aliasing caused by
the day/night cycle which account for the increased power in the lower frequencies.
Due to the different cadences, higher-frequency signals were better captured in the
HARPS data while the HARPS-N data was better at capturing lower-frequency
signals. Following Al Moulla et al. (2023), the frequencies in the gray areas of A.3
were combined and then divided by the length of the observation window to produce
the VPSD seen in Figure A.4.
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Figure A.3: The VPS obtained from HARPS and HARPS-N data.

Figure A.4: The VPSD obtained from the combined HARPS and HARPS-N data.
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A.4 Modeling the VPSD

Following Al Moulla et al. (2023), two types of analytical functions were chosen to
fit the stellar signal components. A Lorentzian function in the form:

V PSDL = AL
Γ2

(ν − ν0)
2 + Γ2

, (A.5)

was chosen to represent the periodic components where AL is the amplitude, Γ is the
full-width at half maximum (FWHM) and ν0 is the central frequency. Additionally,
a Harvey function in the form:

V PSDH =
AH

1 + (τν)α
, (A.6)

was chosen to fit the granulation phenomena where AH is the amplitude, τ is the
characteristic timescale and α is the power-law slope. To constrain the Harvey
functions, α was set to 2 as in Lefebvre et al. (2008). The photon noise was also
included as a constant.

Using the reported coefficients from Al Moulla et al. (2023), the analytical func-
tions were overplotted on the VPSD and then adjusted by eyes. They were then
combined to produce an initial model for the VPSD. Figure A.5 shows the fitted-
by-eyes functions and the modeled VPSD overplotted on the GLS VPSD.

Figure A.5: Over plot of modeled and GLS VPSD.

An attempt was made to optimize the model by fitting the fitted-by-eyes VPSD
to the GLS VPSD using a Levenberg-Marquardt (LM) minimization from the lmfit
python module (Newville et al., 2021). The LM minimization is an optimization
method used primarily for solving nonlinear least squares problems (Roweis, 1996).
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Following Al Moulla et al. (2023), the model was optimized with respect to the
GLS VPSD averaged on logarithmically equidistant frequency steps. The fitted-by-
eyes VPSD was used as the initial guess and max iterations of 50,100,500 was tested.
The results are seen in Figure A.6.

Figure A.6: Log-log plot of VPSD vs Frequencies. The fitted-by-eyes VPSD (pur-
ple), log binned VPSD (dots), and the fitted VPSD models with different max
iterations can be seen overplotted on the GLS VPSD (grey).

From Figure A.6, it was observed that if the max iterations are set too low, the
fitted model is not optimized, however, if too high, the fitted model begins to diverge.
The max iterations were therefore set to 100 which produced the most visually
accurate fit to the GLS VPSD. Additionally, the validity of using the binned GLS
VPSD, represented by the black dots, in the fitting procedure is questioned since
it does not appear to follow the bump of the p-mode oscillations. Unfortunately, it
was not possible to explore this further during the internship.

A.5 Experimenting with the HARPS-N Solar RV

Data

During the internship, two short experiments were performed with the HARPS-N
data set, to learn to manipulate and become more familiar with the data set.

As previously discussed, the HARPS-N data set contains two types of stellar
activity indicators. Photospheric indicators such as Bis Span, FWHM, and con-
trast which are derived from the CCF between the stellar spectrum and the binary-
weighted line mask, and photospheric indicators such as RHK and SMW . The first
experiment involved a visual comparison of the long-term trends due to stellar mag-
netic activity of the observed RV measurements and the RHK indices. The aim was
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to show, similar long-term variability in both sets of data. This was done by normal-
izing the data and extracting the slow variation due to the 11-year magnetic cycle
as outlined in Section A.2. The trends were then normalized to 1 and overplotted
along with their difference to visualize the differences seen in Figure A.7.

Figure A.7: Comparison of HARPS-N RV and the log(R′
HK) solar indicator.

Here, it was observed that large-scale trends in the HARPS-N RV and RHK
indices are similar with small variations at low scales. These small variations are
expected since the RV measurements are based on photospheric lines while the RHK
is based on chromospheric lines, where the changes in the solar magnetic activity
between the photosphere and chromosphere would result in small-scale or high-
frequency variations. It was also observed that the difference between the trends
shows little variation with a standard deviation of 0.08 about a mean of -0.05,
reiterating the usefulness of the RHK indices as a solar activity indicator.

As previously discussed, the detrending method can be modified to capture
higher frequency variations by increasing the polynomial degree or reducing the
window length. Similar to the thesis analysis, other methods can also be applied
where multiple indicators are jointly considered thus capturing more variations due
to solar activity. One such tool is the modified GLS periodogram where a linear
combination of multiple filters along with the sinusoidals and constant is fitted to
the data. This method is briefly discussed in Section A.6.

The second experiment performed, aimed to observe the effect of the 11-year
magnetic cycle on the GLS periodogram. The HARPS-N data release contains 3
years of RV measurements from 07/2015 to 07/2018, approximately 1/4 of the 11-
year solar magnetic cycle 24 (Jiang et al., 2015). It was therefore hypothesized that
if the long-term variability due to the magnetic cycle is not removed during the
detrending process, it should have a measurable effect on the GLS VPSD. This was
tested by splitting the HARPS-N data into three 1-year sets, calculating the GLS
VPSD for each, and comparing the estimated parameters that describe the GLS
VPSD. The process was repeated for the RHK data to verify that any changes were
due to the solar magnetic activity cycle.

From Figure A.8 it was observed that some models were not properly fitted.
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Figure A.8: The first row shows the HARPS-N RV time series divided into 3 data
sets, RV1 (red), RV2 (green), and RV3(blue), each 1 year long. Row 2 contains their
corresponding VPSD with an over plot of the fitted modeled VPSD. Rows 3 and 4
are the RHK equivalent to rows 1 and 2.

This was due to limitations in the fitting procedure described in Section A.4 such
as its sensitivity to the initial model as well as the tendency to diverge with too
many iterations. Unfortunately, these limitations could not addressed during the
internship, however, an attempt was still made to compare the fitted models as seen
in Figure A.9.

Figure A.9: Comparison of fitted model VPSD and RHK PSD.

The lack of clear trends in Figure A.9 over the three years may be due to sev-
eral factors including the limitations in the fitting procedure. Since the available
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HARPS-N data was collected as the solar cycle was entering a minimum, it is pos-
sible the long-term variations were too small to be captured by this analysis. It
would be better to test the largest long-term variations during the solar maximum
to minimum transition or vice versa. The upcoming release of three more years of
HARPS-N data (2018-2021) will provide greater coverage of the 11-year solar mag-
netic cycle which can increase the possibility of capturing long-term variations thus
improving this analysis.

A.6 Contributions to Sulis et al. (2024)

The final part of the internship involved a small contribution to “A low-mass sub-
Neptune planet transiting the bright active star HD 73344” by Sulis et al. (2024).
HD 73344 is a bright F star with a sub-Neptune planet candidate orbiting at ≈ 15
days. Sulis et al. (2024) proposes the detection of a second planetary candidate with
a period of 66.45 days. My contribution involved using the tools learned during the
internship to perform various tests on SOPHIE RV data to rule out false confirma-
tion of this second candidate due to stellar activity and other processes. The data
provided included the SOPHIE RV data and several stellar activity indicators such
as ∆FWHM, Area, Bisector, log R′

HK , and H-α.
The first test compared the GLS periodograms of the unbinned and binned data

to observe the effect of binning on the GLS periodograms. This was done for all the
binned and unbinned data provided as well as an additional linear trend as seen in
Figure A.10. From this, it was observed that binning the data introduced a small
power in the GLS periodogram at the period of interest, PoI, however, the power
introduced was too small to account for the peak at the PoI. It was also noted that
binning introduced power fluctuations at shorter periods which can lead to false
detections. Therefore, it is recommended to avoid binning when possible to avoid
contamination of the periodogram.
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Figure A.10: The first column displays the unbinned and binned time series plots.
The second and third columns contain the corresponding GLS periodograms for the
unbinned and binned data respectively. The final column contains the difference
between the unbinned and binned GLS periodograms. The red vertical line indicates
the period of the suspected planet.

As seen in the first column of Figure A.10, the data was obtained in two cam-
paigns (C1 and C2) some time apart. The second test aimed to verify the coherence
of the periodic signals between the campaigns. In Figure A.11, extracted from Sulis
et al. (2024), a small peak can be seen at the PoI in some of the stellar indicators,
and the linear trend in C1 and C2, however, it is no longer present when the cam-
paigns are joined. This suggests that the phase of the signal observed in C1 and
C2 may be out of phase and therefore not from the same source (planet). This
theory was tested by calculating the phase of the signal at the period of interest for
C1, C2, and C1 + C2. The periodic signal for each phase was then overplotted on
the RV measurements for a visual comparison as seen in Figure A.12. While the
calculated phases appear to be different, visually, the signals appear to be coherent
confirming that they are from the same source. The small variation seen may be
due to instrumental noise.
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Figure A.11: Temporal evolution of the stellar activity. From top to bottom: RV
data, FWHM, the Area of the Gaussian fit to the CCF, Bisector, log(R′

HK), Hα

lines, and linear trend. From left to right: Time series, GLSP for the first campaign,
second campaign, and both campaigns. In all the time series, the long-term variation
has been eliminated by a two-degree polynomial fit. The large red, green, and blue
vertical lines indicate the stellar rotation period (and half it’s period), the orbital
period of the transiting planet (b), and the orbital period of the candidate planet
(c), respectively (Sulis et al., 2024).

Figure A.12: Periodic signal with calculated phases from C1, C1, and C1 + C2
overplotted on SOPHIA RV measurements.
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The final test was more closely related to the work done in this thesis. Using
four different models, the VPS was calculated for the SOPHIE RV using a modified
GLS periodogram and compared as seen in Figure A.13. The models used contained
a linear combination of:

1. Sinusoids

2. Sinusoids + solar activity indicators

3. Sinusoids + a constant + solar activity indicators

4. Sinusoids + a constant + a linear trend + solar activity indicators

Figure A.13: Comparison of the VPS of the SOPHIE RV calculated with a modified
GLS periodogram with four different models. The black vertical line indicates the
PoI (66.46 days) as suggested by Sulis et al. (2024) while the red line is the period
(67.33 days) where peaks were observed.

From Figure A.13, we observe the peak in all the VPS, which indicates that
the signal at this period exists in the RV measurements but not in any of the
models tested including the stellar indicator models. While this does not confirm
the presence of an exoplanet, it confirms that the signal at this PoI is not due to
any systematic error or stellar activity.
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