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Chapter 1

Quasar variability

1.1 Introduction

Studying quasar variability offers a chance to understand the processes that
drive some of the most energetic phenomena in our universe. With the advent
of the Legacy Survey of Space and Time (LSST), led by the Vera C. Rubin
Observatory, an unprecedented amount of quasars will be observed, providing
the means to conduct the most in-depth variability studies of quasars.

Through the use of novel machine learning methods, secrets hidden within
stochastic quasar signals can be unlocked, whether purely for interpolation, for
a more in-depth understanding of the parameters associated with supermassive
black holes, or for detection of rare events such as impending supermassive
binary black hole mergers. This thesis proposes a method to tackle these
challenges through the use of a sophisticated technique that combines
stratification, attentive mechanisms, and neural processes to generate reliable
and smooth light curve models of quasars from large datasets with relatively
few context points in a non-parametric manner. We will also discuss models that
can be used in tandem, namely transformer mod els that can be used to detect
hidden signals within the light curves. We will be using many quasar light curves



obtained from large optical/UV surveys, along with simulated light curves.
The thesis is structured as follows. In Chapter 2, we discuss the theory

behind quasar variability and the models that drive our understanding of it. In
Chapter 3, we discuss methods that are currently used to model quasar
variability and the benefits and costs associated with these various models. In
Chapter 4, we describe the different datasets that we will be using for this
analysis with a mixture of real
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and simulated quasar light curves. In Chapter 5, we discuss the models that we
will be utilizing and the algorithm that we have developed that allows them to
work in tandem. Finally, we will discuss our results in Chapter 6.

1.2 Active Galactic Nuclei

Quasars, also known as Quasi-Stellar Objects (QSOs), are powerful signals that
have been observed throughout the electromagnetic spectrum ranging from
high-energy gamma rays to radio wavelengths. This wide range of detection
windows has lead to many different definitions of quasars. In order to
understand the definition of quasars in the context of variability analysis, we will
first discuss the commonly accepted unified model of Active Galactic Nuclei
(AGN) phenomena [Antonucci, 1993].

AGNs are found in galaxies where the luminosity of the central region is com
parable to or much brighter than the luminosity of the rest of the galaxy. These
luminosities can extend to 1047 ergs/s making them among the most luminous
ob jects in our universe. This enables the detection of AGNs at high redshifts
(currently z ∼ 7), which makes them important for understanding the evolution of
our universe [Padovani et al., 2017].

AGNs exhibit other common characteristics. AGN are visible throughout the
electromagnetic spectra from high-energy gamma-ray bursts to low-energy
radio observations. The presence of broad emission lines and narrow forbidden
and emis sion lines within their spectra is characteristic of AGN [Padovani et al.,
2017].

It is widely accepted that all AGN phenomena are powered by a central
super massive black hole (SMBH) surrounded by an accretion disk at the
nucleus of the host galaxies. The matter accreting onto the SMBH provides the



energy to the disk to power the quasar. This accretion is among the most
efficient processes and produces the characteristic bright signals. (See Shakura
and Sunyaev [1973] and Rees [1984]).

The accretion disk is surrounded by many different regions including a dusty
torus region that can absorb and remit optical and ultraviolet radiation into the
infrared band. The broad line region (BLR) and narrow line region (NLR) are
made of gaseous clouds that produce the characteristic lines observed in the
spectra of different AGN types. The luminosity of this AGN region compared to
the host galaxy determines whether the object is known as a quasar or a
Seyfert galaxy.
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Figure 1.1: Unified Model of AGN(taken from Reynolds et al. [2014]). The
different regions are marked in white and the object that is being observed is
marked in green

Quasar luminosities are so bright that they outshine the host galaxy. Thus, we
observe a point-like object instead of the characteristic disk-like structure of the



galaxy. With Seyfert galaxies, the AGN region is still bright but the structure of
the host galaxy can be seen in the background.

AGNs can be classified into Type 1 and Type 2 objects depending on the
presence of lines in their spectra. The Type 1 objects exhibit broader emission
lines and narrow forbidden lines, while Type 2 objects only demonstrate narrow
emission and forbidden lines [Khachikian and Weedman, 1974]. There are
further classifications based on the presence of jets. Some AGNs exhibit
extended jets that can be detected in radio frequencies. Furthermore, there are
objects known as blazars that are characterized by rapid variabilities and
enhanced γ-ray activity [Padovani et al., 2017].

The unified model of AGN is described in Figure 1.1. It proposes that these
differences originate from the inclination of the object being observed. At low
incli
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nations from the black hole, the dusty torus region obscures the BLR, only
enabling observations of the NLR. This explains the presence of Type 2 objects.
At higher inclinations, the BLR can be seen and the object is a Type 1 object.
The presence of radio jets also determines whether the object is radio-loud or
radio-quiet. For radio-loud objects, when the object is viewed from the highest
inclinations (i.e very close to the jets), the jets dominate the signal, giving rise to
the high variability that characterizes blazars (see Antonucci [1993] for a full
description of the unified model of AGNs).

Due to the dominance of the quasar core over the host galaxy, it is easier to
de termine variability properties from quasars in large optical surveys. Thus, this
thesis will focus on the variability associated with quasars, though the
techniques and con clusions can be further applied to other classes of AGN with
enough variability data and distinction from the effects of the host galaxy.

1.3 Variability of Quasars

Quasars exhibit variability across different electromagnetic wavelengths. The
am plitude of the variability varies depending on the wavelength, from hours to
days in the x-ray to months to years in the optical.

There are many proposed sources of variability. The proposed intrinsic
source of variability comes from thermal fluctuations within the disk causing



flare-like or blob like events [Hawkins, 2007]. However, other phenomena
around the AGN region have also been proposed to explain the observed
variabilities. These include processes such as microlensing by objects along the
line-of-sight [Hawkins, 1993] or other transient events such as supernovae
occurring during a starburst event in the host galaxy [Aretxaga, 1997]. It is now
commonly accepted that thermal fluctuations are the main driver of quasar
variability and are used for modeling variability [Kelly et al., 2009]. We will
discuss these models further in the next chapter.

Certain components of the central region can cause variability at distinct
wave lengths. X-ray variability is thought to originate from the corona of near the
central SMBH. The optical and UV variability occurs from the accretion disk,
with an extra component in the optical occurring from the BLR and NLR regions.
Even within a single wavelength regions, different wavelength bands can probe
different regions of the accretion disk. These variation differences allow for
characterizing the structure of the source of this variation [Ulrich et al., 1997].
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Figure
1.2: Reverbaration Mapping of different regions at different wavelengths. Figure
from Cackett et al. [2021]

Quasar variability is difficult to model as the variations are aperiodic and
stochas tic [Kelly et al., 2009]. Unlike periodic phenomena, stochastic variability
requires statistical modeling techniques instead of a distinct set of periods that
can be used to forecast the model into the distant future. However, unlike
transient variability, the variability of quasars is not a temporary event and
occurs continuously. It is also thought that the variability could be influenced by
inherent features of the central SMBH. Extracting the effect of these features on
the variability can be complex and non-linear. Thus, stochasticity is tougher to
model and requires data-driven models.



1.4 Reverberation Mapping

The variability of quasars unlocks a powerful tool for understanding their
underlying physics and structures known as reverberation mapping.
Reverberation mapping utilizes the temporal variations in quasar signals to map
out the physical structure of different regions, as well as estimate the mass of
the central SMBH. This allows for finer resolutions of the central region than
direct spatial measurements [Cackett et al., 2021].

The concept behind reverberation mapping lies in measuring the time lag be
tween signals generated from the central luminous source and the signals that
occur from the surrounding regions. The simplest model is known as the
lampost model where the central luminous source is assumed to be the coronal
emission of the central region which is reprocessed by the surrounding regions.
The time lags char acterize a transfer function, which is convolved with the
inherent variability in the quasar to generate the characteristic observed light
curve. Thus, knowledge of the transfer function allows reconstruction of the
region of the SMBH [Cackett et al., 2021]
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Figure
1.3: The effect of different regions on the light curve with the same implicit
driving variability. Figure from Cackett et al. [2021]

The transfer function at different observed wavelengths capture information
at different regions of the AGN. The X-Ray reverberation mapping allows for
catego rizing structures very close to the SMBH, while UV/optical reverberation
mapping can categorize the structure of the accretion disk. Further mapping in
the optical region can also categorize the BLR of the AGN. A detailed
visualization of the dif ferent regions of the accretion disc can be seen in Figure
1.2. Thus, reverberation mapping through temporal analysis can provide a great
deal of information about the central regions of the quasar and how they
reprocess signals generated from the central region [Cackett et al., 2021].

Reverberation mapping through spectral lines can provide narrow estimates
of the black hole mass. However, large optical/UV surveys that capture many
quasars typically provide photometric bands. These photometric bands can
probe different regions of the central region. Photometric reverberation mapping
involves measuring the time lag between the continuum emission (which is in
the UV and optical bands)
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(b) The transfer functions from Chelouche
and Daniel [2012]. One is Gaussian (darker

(a) Thin disk transfer function from Cack
ett et al. [2007] at different inclinations and
temperatures.

lines) and the other is a top-hat function
modified to decay linearly instead of an
abrupt end (lighter lines).

Figure 1.4: Different transfer functions from various sources

and the BLR emission (which can be seen in optical bands). This time lag can
be used to estimate the size of the BLR as the signal travels through this region
at light speeds. In Figure 1.3, the effect of these lags on the light curve can be
seen. Then, the BLR radius can be used to estimate the SMBH mass assuming
the viral motion of the clouds. The structure of the BLR at different wavelengths
can be characterized by different transfer functions. Obtaining these transfer
functions from the light curves helps determine the central structure.(see
Cackett et al. [2021])

The actual shape of the transfer function depends on the assumed model. In
Cackett et al. [2007], the transfer function is derived from a modified Planck
function with the assumption of a thin accretion disk, while in Chelouche and
Daniel [2012], the transfer function can be assumed to be either a gaussian or a
modified top hat function with an assumption of a thick BLR. The particular
choice of transfer functions can affect the spread of the time lags and their
effect on the light curves.

While reverberation mapping is a powerful technique in theory, it is often con
strained by large gaps within the observed light curves. These gaps can cause
issues in determining the time lag from cross-correlation functions of the light



curve. Thus, it is necessary to utilize techniques to fill in these gaps and
generate finer cadence light curves (conditioned on the observed data) to obtain
smooth light curves nec essary for reverberation mapping [Cackett et al., 2021].
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1.5 Quasar Variability in the LSST

Large-scale surveys such as the Sloan Digital Sky Survey (SDSS) and Zwicky
Tran sient Facility (ZTF) have revolutionized the field of quasar variability by
providing high-quality multi-year observations of spectroscopically confirmed
quasars. For in stance, the SDSS Data Release 16 quasar catalog contains ∼
750, 000 quasars. [Lyke et al., 2020].

However, the advent of the LSST is set to increase these numbers by many
orders of magnitude. The LSST is expected to detect ∼ 15 million quasars
through its operation time. Some of these quasars will be at higher redshifts
than any prior surveys [LSST Science Collaboration, 2009].

The LSST observation strategy provides great opportunities for quasar light
curves. The LSST observation strategy is optimized for maximal sky coverage.
Short cadence sampling of light curves (on the order of days) will be possible
with the LSST, which allows for highly accurate time-domain analysis that can
be used for reverberation mapping, as well as other interesting phenomena
such as observing changing-look AGNs [Wang et al., 2024] or short-period
SMBH binaries that can be detected in the gravitational wave domain by
space-based observatories such as the future planned Laser Interferometer
Space Antenna (LISA) [Xin and Haiman, 2021]. These events can be observed
at much higher frequencies with the LSST than any such large-scale survey
before.

However, there will be gaps during different LSST ‘seasons’ (periods), where
no observations will be taken. These gaps will interfere with these
short-cadence events, necessitating the need for statistical modeling techniques
that can smoothen these gaps [Kovačević et al., 2022a]. In Figure 1.5, we can
see simulated light curves with cadences of the ‘rolling’ cadence strategy of the
LSST from Kovačević et al. [2022b] as compared to observed light curves from
other surveys.

Another important challenge during the LSST is modeling light curves in the
initial few years of the survey. During this period, there would be fewer
observations to model, necessitating the need for models that can learn quickly



from very few context points. Thus, it will be important to apply novel techniques
to extract insights from quasar light curves within the LSST.
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(b) Light Curve simulated with LSST
Rolling cadences from Kovačević et al.

(a) 20 year quasars light
curves from various
surveys (including the
SDSS, PS1, DES and

DESCam) from Stone et
al. [2022]
[2022b]



Figure 1.5: Comparison of simulated LSST Cadences with other surveys 9

Chapter 2

Modelling of Quasar Variability

There are two main methods to model any light curves. It can be done in the
frequency domain or time domain. For irregularly sampled stochastic light
curves such as those of quasars from large surveys, frequency-derived features
such as the periodogram are distorted. To deal with this, the best method is to
utilize Monte Carlo sampling to simulate light curves from periodograms and
choose the best fitting light curve. However, this method is computationally
expensive, making it unsuitable to apply to large surveys [Kelly et al., 2014].

Thus, time-domain methods are required for modeling light curves in large
sur veys. Traditionally, time-domain methods are modeled as realizations of
Gaussian Processes. However, these methods have their challenges as well.

2.1 Gaussian Processes

Gaussian Processes are stochastic distributions where each point can be
modeled by a multivariate Gaussian with a characteristic mean and covariance
matrix. Thus, the entire process is a distribution over a distribution of the
Gaussians. Gaussian Processes can be modeled by maximizing a likelihood



function through a Bayesian approach to reconstruct the stochastic process with
a confidence interval associated with each point. The obtained covariance
matrix can then be used to model the autocovariance function to construct a
Fourier transform of the light curve. Thus, Gaussian Processes are a powerful
tool to model light curves within the time domain. They also provide the benefit
of providing a mean and standard deviation of the process, allowing for multiple
samples to be realized from the processes [Kelly et al., 2014]. Gaussian
Processes have also been shown to successfully model quasar light
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curves Danilov et al. [2022].
However, this power comes with a price. Gaussian Processes require

inversion of this covariance matrix which already contains a grid on the order of
n × n where n is the number of points. Inverting this matrix requires an operation
on the order of O(n3) [Kelly et al., 2014]. Furthermore, the initial covariance
matrix is a prior assumption of a Gaussian Process model (known as the
‘kernel’). For quasar light curves that will be observed within the LSST, we
would like to be unbiased by prior kernels to facilitate the discovery of new
objects and explain variability that differs from the assumptions that we have
made prior.

In order to get around these obstacles, there are several different methods.
The most popular method to model the variability is to make more assumptions
about the basic processes. However, it is important to note that this imposes
assumptions on the models once again.

2.2 Damped Random Walk

The most popular model for modelling quasar light curves is through the use of
the Ornstein–Uhlenbeck process or the Damped Random Walk (DRW) process.
These are specific realizations of processes that are known as First-Order
Continous Autoregressive model or more popularly known as CAR(1) models.
The differential equation governing the DRW process is given by:

dX(t) = −
1
τX(t)dt + σ

√dtϵ(t) + bdt (2.1)
Where τ is know as the relaxation time of the quasar flux, characterized by

X(t). The ϵ is a white noise process that can be assumed to be gaussian. Thus,



there are two components that drive the variability forward. The red noise
signals characterized by X(t) are mixed with white noise signals that come from
the ϵ term in the DRW process [Kelly et al., 2009].

This red noise is of special interest when studying quasars as it can contain
valuable information about the structure of the object or signals indicating the
presence of possible binary black holes.

The DRW is an important equation that shows up in another domains of
physics as well. Most notably, it describes Brownian motion of particles. A
process under going a DRW varies on the short term as per the σ and on the
long term timescales
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(comparable to τ ), the τ relaxation time causes a disapation of the red noise,
causing a domination of the white noise process [Kelly et al., 2009].

An advantage of the DRW model over a generic Gaussian Process is the
ability to model in a computationally efficient manner [Kelly et al., 2009]. They
can be modelled in linear time and with only a few parameters. Furthermore,
studies that came out soon after the model confirmed agreement with the DRW
model in real data [MacLeod et al., 2010; Kozłowski et al., 2010].

The DRW model is an effective tool to model light curves as well as generate
simulated light curves. It can accurately describe several light curves that have
been observed. However, the DRW comes with its own share of problems.

2.3 Challenges with the DRW and other
Parametric Modelling Methods

Despite the initial success with DRW methods, subsequent results show
observed deviations in some real datasets.

The Kepler satellite is able to observe with very short cadences and it was
found that very short scale variabilities from Kepler data deviate from the DRW
model [Mushotzky et al., 2011]. This was replicated in further studies as well
[Kasliwal et al., 2015; Simm et al., 2016; Smith et al., 2018]. Furthermore, other
studies have shown that constraining of DRW parameters could be a much
tougher task than previously thought. It requires much longer surveys (on the
order of 20 years) than any of the large optical surveys currently in operation



[Kozłowski, 2017].
Other methods have been proposed to replace the DRW method and match

quasar light curves better. These include CARMA processes which are an
extension of CAR(1) processes beyond the first order. The Damped Harmonic
Oscillator model is a particular examples of CARMA models that has shown
good results [Kelly et al., 2014; Kasliwal et al., 2017; Moreno et al., 2019; Yu et
al., 2022].

Parametric-based models such as CAR(1) and CARMA have their
advantages when it comes to well-defined datasets with a large number of
observations and the ability to capture more physical insight into the driver of
the processes behind them. However, they introduce more parameters to be
assumed for modeling. The LSST will very likely produce quasar light curves
that are different from the expected models [Kovačević et al., 2023]. This is
especially important in the early years when
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studying variability with fewer data points. This has led to the development of a
different class of models that focus on learning variability in a data-driven

method.

2.4 Deep Modelling Methods

The advent of machine learning and artificial intelligence has revolutionized
different fields of science, as well as our society at large. As the amount of data
generated and stored gets larger and larger each year, the ability of machines
to learn underlying trends from data through complex algorithms improves as
well. This same trend is seen in the field of astronomy as well. Large surveys
increase the astronomical well of data exponentially. The ability of any one
human being to analyze this amount of data is limited. Thus, we require
machines to perform this analysis for us. As data science is developed more
and more, there is less focus on preprocessing the data and more incentive to
draw insights from raw data. However, as scientists, it is important to incentivize
interpretability of insights gleaned from such models [Smith and Geach, 2023].

The field of quasar variability is a ripe one for the application of machine
learn ing. Deep Neural Networks excel at many tasks that are required for



quasar studies. Classification of variable objects is a critical field for
identification of AGN, as well as interesting subtypes (see Mechbal et al. [2024]
and references herein). Unsuper vised clustering of light curves (which involves
not knowing the underlying classes present) can unlock vital information about
sources of variability and group to gether light curves that share similar
structure [Kovačević et al., 2023; Čvorović Hajdinjak, 2024]. Models such as
Recurrent Neural Networks and Attention-based Transformers are able to learn
temporal features with minimal feature engineering, giving them the ability to
unlock powerful insights about time series [Smith and Geach, 2023; Vaswani et
al., 2017].

Beyond classification, neural networks perform well on regression and gener
ational tasks, generating functions from stochastic datasets. This capability has
allowed a plethora of different models to model quasar light curves.
Auto-encoders have been utilized to generate representations of light curves
and have been shown to correlate with properties driving the quasar such as
black hole mass and lu minosity [Tachibana et al., 2020]. Variational
autoencoders have been utilized to improve modelling through the introduction
of a latent space to learn a wider range of representations as well as detect the
presence of changing-look AGNs in the data
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(a) Light Curve modelled by DRW from
Kelly et al. [2009]

(b) Light Curve modelled by an auto
encoder from Tachibana et al. [2020]



(c) Light Curve modelled by a VAE from
Sánchez-Sáez et al. [2021]

(d) Light Curve modelled by latent SDEs
from Fagin et al. [2024]

Figure 2.1: Different models of quasar light curves

[Sánchez-Sáez et al., 2021]. Modified Bayesian Attentive Neural Processes
have been used for the dual purpose of reconstructing light curves, as well as
retrieving physical parameters behind them [Park et al., 2021]. Latent
Stochastic Differential Equations have been used to model multiband simulated
light curves and estimate parameters and time-lags between all the curves
[Fagin et al., 2024]. Stochastic Recurrent Neural Networks as well have been
utilized to recover CARMA parame ters from light curves [Sheng et al., 2022]. In
Figure 2.1, several examples of these models have been shown and compared
to the DRW GP modelling.

Our model stands among these methods as a non-parametric way to
reconstruct light curves. In addition to the modeling, as performed by the
previous methods,
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we aim to utilize the non-parametric modeling to generate smooth and
interpolated light curves to aid in time series analysis. Initially tested on
ASAS-SN light curves [Čvorović Hajdinjak, 2024; Čvorović-Hajdinjak et al.,
2022], the conditional neural processes (CNPs) have been upgraded and tested
on larger datasets, such as the LSST AGN Data Challenge [Kovačević et al.,
2023]. Plain Conditional Neural Pro cesses perform well at learning stochastic
representations over few different context points and are also able to produce
confidence estimates and capture uncertainty in the modelling. Neural
Processes stand at the intersection between Gaussian Pro cesses and Neural



Networks, with the promise to learn diverse stochastic processes with minimal
parametric assumptions [Garnelo et al., 2018a,b]. However, CNPs are prone to
underfitting and struggle to understand the full structure of temporal data
[Garnelo et al., 2018b; Kim et al., 2019; Qin et al., 2019]. Thus, a wide range of
upgrades are needed in order to fully capture temporal structure and generate
reliable representations of real datasets.

We also aim to understand the insights that our model can learn. Through
analysis of the internal workings of the model, we can derive insights into the
very processes that drive variability within the quasar light curves. We utilize
simple methods to derive quasar parameters out of the hidden layers of our
model.
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Data

More and more large catalogs of quasar light curve data are becoming available



with the advent of large surveys. In this thesis, we will restrict our analysis to
samples of optical/UV quasar light curves from the LSST AGN Data Challenge
(Ultimately from SDSS) and ZTF. Examples of light curves from these surveys
are seen in Figure 3.1.

In addition to real data, we use simulated quasar light curves to test if the
model can reconstruct processes that contribute to the variability.

(a) Light Curve from the LSST AGN
Data Challenge

(b) Light Curve from ZTF

Figure 3.1: Light Curves from different surveys with the corresponding
photometric error bars.
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3.1 LSST AGN Data Challenge

The LSST AGN Data Challenge is a sample of data from SDSS that provides
an example of real observations of objects to mock the observations in the
LSST. It was created from a combination of spectroscopically identified objects
and variable objects from the Stripe82 region of the SDSS with x-ray-confirmed
objects from the XMM-LSS x-ray region and taking the light curves of
corresponding sources from the SDSS. While the challenge was mainly aimed
at developing selection methods for AGNs, the data provided is also invaluable
for the time-series analysis of AGNs [Yu et al., 2022; Savić et al., 2023].

We chose a sample of labeled ‘QSO’ objects from the LSST AGN DC that



contains at least 100 observations of the light curves. This is very similar to the
sample chosen in our previous application of CNPs on the LSST AGN DC
[Kovačević et al., 2023]. The key difference is that we choose light curves with
at least 100 observations across different bands. This decreases the sample
size by a few curves leaving us with 984 quasar light curves in the bands u, g, r,
i, and z.

3.2 ZTF Light Curves

The Zwicky Transient Facility (ZTF) is a wide-camera all-sky survey that can
detect variable objects. With 21 available data releases from 2018 to 2024,
there are many short cadence observations available within the ZTF that would
better inform the working of our model [The ZTF Collaboration, 2019].

We work with a small subsample of the ZTF. We first select
˜1000 QSO

observa tions from the dataset at random and then select objects that lie
between the 40th and 60th percentile in number of observations. This is due to
the large variability in the number of observations in the ZTF dataset as seen in
Figure 3.2. This vari ability will induce bias during the padding processes as the
high spread will lead to most light curves losing information and just becoming
trivial zero variability lines. Thus, we finally obtain a sample of 188 light curves.
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Figure 3.2: Number of observations per light curve in the subsample derived
directly from the ZTF database before filtering. The bands g, r, and i are colored
blue, orange and green respectively.

Table 3.1: Range of parameters for our simulated DRWs

Paramete
r

Range

Redshift 0.1-6

log(τDRW ) 0.6-3.
5

SF∞ 0-0.5

3.3 Simulated Light Curves

3.3.1 Fiducial Light Curves

In order to test the performance of the model, it is useful to test on events gener
ated from the same stochastic processes. Neural Processes literature usually
eval uates performance on data generated from Gaussian Processes (see
Garnelo et al. [2018a,b]; Kim et al. [2019]; Qin et al. [2019]; Foong et al. [2020];
Dubois et al. [2020]). Luckily, we have a gaussian process that can simulate
similar characteris tics of quasar variability, the DRW model.

We utilize the astroML implementation of the DRW and provide a random
range of redshifts, taus and SF∞ parameters to simulate 1000 different DRW
models. We vary these parameters as described in Table 3.1. We also degrade
this data by assuming that the light curves are observed for a continuous 90
days yearly with gaps between each cycle. We compare the modeled smooth
light curve to the real data without this degradation to visualize the performance



of the model as an interpolater for data for which it has no prior knowledge.
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Table 3.2: Range of mean timelags for our simulated light curves with Gaussian
transfer functions. The standard deviations of these gaussian is a quarter of the
mean timelag.

Band Mean Timelag(τ ) (in lightdays)

u 0.1-0.3

g 0.6-0.9

r 1.3-1.7

i 2.3-2.7

z 3.5-3.9

3.3.2 Light Curves with Transfer Function

In order to determine if our model can capture physical information, we
generate a sample of quasar light curves with several physical parameters
associated with the central black-hole region and time-series features that drive
the variability. For a more detailed description of how our light curves are
simulated, refer to Kovačević et al. [2022b] Particularly of interest to us is
whether the model can capture a convolutional kernel from the curve that can
be used to reconstruct the transfer function, hence unlocking information on the
central black hole region directly from data.

We simulate a sample of light curves, assuming a DRW driving variability.
Then, to simulate the effect of different LSST bands on the light curves, we
calculate a transfer function for the LSST band wavelengths. Thus, we are
modelling the effects of different regions of the accretion disk on the driving
variability.

We utilize two different types of transfer functions. We generate random
mean time lags corresponding to each of the bands in the LSST as described in
Table 3.2. Then, we generate a Gaussian functions based on the
recommendations of Chelouche and Daniel [2012]. This Gaussian is centered
at the mean time lag, with a standard deviation of a fourth of the mean time lag.



This transfer function corresponds to an assumption of a Gaussian shape of the
BLR [Chelouche and Daniel, 2012].

The second transfer function assumes a thin disk model with the same lamp
post model as described above. The transfer function from this set-up has been
calculated in Cackett et al. [2007] and is varied for different wavelengths. We
follow the same prescription of Kovačević et al. [2022b] to generate transfer
functions. We will refer to this transfer function as the Cackett transfer function.
This function contains information about parameters such as mass, inclination,
Eddington lumi nosity ratios, and redshifts of the black hole. We generate
random values in the
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Table 3.3: Range of parameters for our simulated light curves with the Cackett
transfer function

Parameter Range

Redshift 0.1-6

log(τDRW ) 0.6-3.5

SF∞ 0-0.5

log(Black Hole Mass (in M⊙)) 8.5-9.5

Inclination (in radians) π

6-π3

Eddington Luminosity ratio 0.01 -
0.3

Figure 3.3: Light Curves simulated with various transfer functions in the u-band.



The light curve from the Cackett transfer function is plotted in orange, while the
gaussian transfer function is plotted in blue. It should be noted that the Cackett
transfer function smooths the light curve more than the Gaussian transfer
function.

range inspired by Fagin et al. [2024] but modified to maintain a reasonable
range of transfer functions for our model to recover. This modified range is
shown in Table 3.3.

The transfer function is chosen randomly from one of these two shapes,
normal ized, and then convolved with the DRW to generate the light curve.
Thus, a light curve that contains information about a particular region of the
accretion disk (via the transfer function at the observed band) and in the case of
the Cackett tranfer function, the other parameters of the black hole, is
generated. An example of the two types of light curves can be seen in Figure
3.3
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3.3.3 Close-Binary Tick Tock Signals

One interesting subsection of quasar light curves is those that may contain
embedded signals that hint at the possibility of an impending binary merger.
These systems are particularly of interest as they are very rare events and
serve as important tests of gravitational physics. Only one known candidate has
been discovered [Jiang et al., 2022]. With the large amount of time-series data
that we are receiving from the aforementioned surveys, we would like to train a
model to correctly identify such events from the light curves.

We utilize the popular transformer models to identify the occurrence of these
events in a time series [Vaswani et al., 2017]. We simulate these ‘tick-tock’
signals by adding a damped sinusoidal signal to both simulated light curves, as
well as the aforementioned LSST AGN Data Challenge light curves. Then, we
feed this to our transformer models to classify the light curves with tick-tocks.

Our simulated light curves are generated in a simpler manner. We simply
gen erate random noise. Then, we take the sum of the noise and a damped



sinusoidal wave with an amplitude between 0.001 and 0.1 and a frequency
between 0.001 and 0.1 days−1as well. We generate 560 light curves with 280
containing tick-tocks and 280 without tick-tock signals.

Similarly, for the LSST AGN Dc, we add the tick-tock signal generated with
an amplitude between 0.0001 and 0.0003 and a frequency between 0.0007 and
0.0009 days−1. We generate 330 light curves with no tick-tock and 99 with
tick-tock signals. Out of these 99, half of them are generated with a range of
tick-tock signals applied to one light curve and half are generated with one
tick-tock signal applied to a range of signals.
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Methods

4.1 Neural Processes

The heart of our modelling algorithm is Neural Processes. Neural Processes
combine the benefits of Gaussian Processes models with Neural Network
models to generate representations of stochastic processes. Neural Processes
can capture subtle patterns in data and scale up to large datasets when trained
on a balanced dataset like neural networks. They also utilize Bayesian methods
to update priors and generate a distribution at every point, allowing for a better
understanding of how well the model is predicting the data at every point like a



Gaussian process [Garnelo et al., 2018b].
The aim of Neural Processes is to generate a representation of stochastic

pro

Figure 4.1: A generalized overview of the encoder-decoder structure of Neural
Pro cesses. Context points are encoded into a global representation that is
used in tan dem with target points to generate corresponding predictions. Figure
from Dubois et al. [2020].
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cesses conditioned on the different observations of the process. In our case,
this is generating representations of each point on our light curve through an
encoder. Then, these different representations are aggregated in some form to
form a global representation of the stochastic process (for us, this is a global
representation of the light curve). Finally, a decoder is used in combination with
this representation to generate predictions on target points [Garnelo et al.,
2018b]. This generalized overview of Neural Processes can be seen in Figure
4.1. The exact mechanism de pends on the particular choice of model from the
Neural Processes family and we will discuss the differences through the rest of
the chapter.

4.1.1 Conditional Neural Processes

Conditional Neural Processes (CNPs) are the simplest and first proposed forms
of Neural Processes. They generate target predictions based on a probability
distri bution that is factorized on the representation of the observation points
[Garnelo et al., 2018a].
Let us assume that our observation set is known as O with a length of n. Every
element in O consists of a pair of points (x,y) where x are the inputs and y are



the outputs. We also have a target set T that consists of just input points with a
length i=0 and T = (xi)i=n+m−1

of m. Thus, O = {(xi, yi)}i=n−1

i=n. For a light curve, our O is
a set of observations and magnitudes pairs that we use as our context points,
while T is time stamps that we would like to predict. In practice, we choose an O
that is a subset of the entire light curve, while we choose a T that is larger than
O while training. During test time, we choose T twice, once for the entire light
curve and then again, we choose a large number of points to generate short
cadence predictions of the light curve [Garnelo et al., 2018a].

We use our O to determine a probability for each point in T. This means we
want to determine p(F(T)|T; O). We assume that the processes are Gaussian
and thus, this probability is a Gaussian probability density. We call this a
Gaussianity assumption.

Another key assumption in Neural Processes is factorization. We assume
that p(F(T)|T; O) is Πm−1

i=0 p(F(xi)|xi; O). This factorization ensures that the process
remains stochastic, as it implies consistency under permutation and
marginalization (i.e any permutation of the time series is valid and the
probability of any point stays the same integrating out other points in the
distribution) [Garnelo et al., 2018a].
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With these assumptions in place, Neural Processes utilize Neural Networks
to generate these encodings. Thus the points are encoded with a multi-layer
perceptron as:

Ri = MLP((xi, yi)) (4.1)

where x and y come from O.
These representations are then aggregated to generate a global

representation. In our case, this is a representation of our light curve with the
dimensionality of the last layer of the multilayer perception (MLP). The initial
mechanism for this aggregation was simply taking the mean of all of the
representations [Garnelo et al., 2018a,b].

R =
1NNX−1 i=0

Ri (4.2)



This representation is now combined with the target points in order to
generate both a mean and a standard deviation prediction for each target point
drawn from T. This is the decoder and it is represented as:

µi, σi = MLP(R, xi) (4.3)

where x comes from T.
This process is far more computationally efficient than the Gaussian

Processes because it just has to act once on the context set and then predict
each target point. Thus, it is only of the computational complexity of O(C+T)
where C is the number of contexts and T is the targets [Garnelo et al., 2018a].

Now the question is, whether this sort of encoding can actually approximate
any function. Indeed, as shown that any function on a set (such as times and
magnitudes for a light curve) can be expressed as a function acting on a sum of
products of functions on the set [Zaheer et al., 2017]. Assuming S to be a set, f
to be a function on the set and ρ and ϕ to be functions on the elements of the
set:

f(S) = ρ

X s∈S

!

ϕ (4.4)

Thus, we can use the MLPs to construct a full representation of the set of light
curves.

With this basic model in mind, the next step is to train and optimize this
model. During training, the CNP is shown a diverse set of realizations of the
stochastic
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process. As the model trains, it can learn how to learn across different datasets.
This suits our goal of modeling a large variety of light curves very well. As we
saw earlier, the final representation is a Gaussian. For conditional neural
processes, optimizing the model is rather straightforward. We utilize the
predicted Gaussian distribution and calculate the logarithm of the probability
(LogProb) that the observed target points belong to this distribution. For a
Gaussian, the PDF is
defined as:



where ytis the target point.

Prob =1

√
2πσe

− 1
2 (yt−µ

2σ )2(4.5)

Thus, the log probability can be calculated at every point as

LogProb = −
1
2log(2π) − log(σ)

−
1
2 yt − µ σ

2
(4.6)

However, there is another consideration that needs to be made. The higher
the loss, the better the distribution captures the value. However, most
algorithms in machine learning are used to minimizing a loss. Thus, we add a
negative sign to the loss. This ensures that minimizing the value will maximize
the log-likelihood. We also draw attention to the use of a mean error calculation.
In prior works, we have utilized a summed probability instead. The usage of a
mean shrinks the gradients, allowing for faster training of the model and
comparison of training across light curves of different lengths.

L =
1
NX

N i=0

log (p(yt|xt; C)) (4.7)

We will also refer to this loss as the reconstruction loss of the light curve.
Alter natively, we will refer to it as the LogProbLoss or LogLikelihood Loss
Garnelo et al. [2018b].

This framework is the heart of the Neural Processes modelling algorithm.
We will refer to this basic mean-pooling model conditioned on context points as
a Basic CNP. In theory, any function can be modeled by BasicCNPs [Garnelo et
al., 2018b]. However, CNPs are very prone to underfitting in practice. Thus,
extra modifications are needed to scale this framework for the generation of
more reliable predictions of realistic processes. The next three sections
describe modifications that are essential for working with real quasar light
curves.
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4.1.2 Attention



One of the reasons that BasicCNPs end up underfitting data is the mean
pooling mechanism. This mean pooling implies that every point on the light
curve con tributes equally to the target point prediction. This is a flawed
assumption for time series [Kim et al., 2019]. For example, consider a simple
light curve that has a single flare event with the rest of the light curve remaining
flat. A more accurate approach to modeling the top point of the flare would be to
utilize the points that lead to the rise and fall of the event. However, mean
pooling can cause the contribution of these points to be dwarfed by the flat
nature of the remaining light curve. Thus, we would like a method to inform the
model which points to prioritize when modeling.

Attentive mechanisms are revolutionary machine learning algorithms that
have revolutionized the ability of models to understand sequential data.
Attention was initially developed for text processing and improved the ability of
models to under stand intertextual relations, without the need to process data
sequentially [Vaswani et al., 2017].

This ability also makes attention suited to the understanding of time series.
Attention can provide the needed mechanisms to improve the temporal
structure of the model predictions. The use of attention to Neural Processes
was first proposed by . They proposed that the mean pooling step was acting as
a bottle-neck and causing underfitting of the context set by the neural
processes. To alleviate this, they utilized attentive mechanisms, transforming
the BasicCNP into an AttentiveCNP, which we will refer to as an AttnCNP [Kim
et al., 2019].

The attentive mechanism works as such. We have a set of points keys and
values (ki, vi). We utilize queries q in order to determine a weight to each key
and then get a value corresponding to each query point. We can assume that
the keys, values, and queries are ordered in matrices of K, V and Q with
dimensions (n×dkeys),(n×dvalues) and (m × dqueries). In this thesis, we will utilize
two types of attention that are the most popular. These are dot product attention
and multi-head attention [Kim et al., 2019].

For dot product attention, we utilize a simple dot product of these matrices.

DotProductAttention
(Q, K, V ) = softmax

QKT dk V (4.8)

Multihead attention is an extension of dot product attention where each of
the matrices is first linearly transformed by utilizing key, query, and value
weights for
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a specific head. This process is repeated for each head. Then, the heads are
con catenated and linearly transformed back into the dimensionality of the
original data [Kim et al., 2019].

These two attentive mechanisms were found to have the best results with
Neural Processes. Thus, we mainly provide the option to utilize these two. In
our models, we have found that dot product attention is needed to capture the
high degree of variance associated with quasars. However, we utilize multihead
attention in our transformer models.

Now, the attentive mechanisms can be utilized in the model. There are two
types of attention depending on the keys and queries. If they are the same, the
attention is known as self-attention. Otherwise, it is known as cross-attention.
We insert self-attention into the encoder. This generates a local representation
for each point with the MLP representation as the values, while the keys and
queries are both the context input points (for us, this is the context time steps).

The next modification is to utilize the attention to inform the target
predictions. This is done by using a cross-attentive mechanism with the local
representations as the values, and the keys as the context input points again.
This time, the queries are the target input points (which are the time steps that
we would like to predict). Thus, we have a representation that is generated for
each target point. Note that this representation still utilizes the entire light curve.
The difference from mean pooling is that it can understand the importance of
different context steps to the overall structure.

The rest of the structure remains the same for AttnCNPs. We still use the
same loss and train in the same way. The difference is that the attentive
mechanism increases the time complexity of the model. Since self-attention
relates each context point to every other context point, the complexity is now
O(C2). Similarly, the cross-attention complexity is O(CT) because it relates each
context point to each target point. Thus, the entire complexity is O(C(C + T)) as
opposed to O(C + T) for the BasicCNP. However, this cost is potentially offset by
the quicker convergence and better reconstructions by AttnCNP over BasicCNP
[Kim et al., 2019].

4.1.3 Latent Neural Processes



One problem of the Conditional Neural Processes lies in the factorization
assumption that was made. This factorization assumption assumes that each
point is indepen dent of the distribution at the other points. This means that the
model predicts
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each point independently of each other. While attention helps alleviate this, the
model would be better if it could understand the global uncertainty and predict
similar values at similar target points. Furthermore, Conditional Neural
Processes are not able to generate coherent samples. Coherent sample
predictions can help the model capture a wider range of possible predictions.
This is helpful, especially in light curves, where it can catch likely flare events.
Gaussian Processes account for these problems through a covariance matrix,
but utilizing similar mechanisms in Neural Processes will increase complexity
[Garnelo et al., 2018b].

To address this concern, the latent path was added to conditional neural pro
cesses. We will call these models LNPs to distinguish them from CNPs.
However, it is important to note that in literature, NPs usually indicate neural
processes with the latent path as we will describe in this section.

The latent path utilizes an encoder similar to the CNP encoder described
above. Thus, latent path keeps the MLP and self-attention from earlier. Then,
the latent path mean pools the representations similar to the BasicCNP.
However, the differ ence is that this representation is now passed through
another MLP layer in order to generate a multidimensional mean and standard
deviation that characterize a Gaussian latent space associated with the global
representation of the curve. This latent space is sampled (this is done by taking
the sum of the mean with the product of a stochastic factor (between 0 and 1)
and the standard deviation). This sam ple is then combined with the target
points to produce the predicted target points [Garnelo et al., 2018b].

The deterministic path from the previous section with cross-attention can be
used as well. This means we use the same cross-attention generated
representation, the latent space sample, and the target points to generate the
predicted target points. Figure 4.2 shows the model’s flow-chart and the
utilization of the different representations generated by the model [Kim et al.,
2019].

However, this latent path changes the calculation of the loss and



optimization. We now have to change the way we calculate the error. From the
marginalization assumption we have for Neural Processes, we can write the
conditional probability
as:

log p(yt|xt; C) = log
Z

(p(zt|C)p(y|x, z)) (4.9)

We use the shorthand p(y|x, z) = Πtp(yt|xt, zt)
The second term here can be thought of as factorized and Gaussian.

However, the entire probability is not, as p(zt|C) is not necessarily Gaussian.
This means that the
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Figure 4.2: A detailed description of the mechanism behind both LNP and AttnL
NPs. Figure from Kim et al. [2019]. Note the addition of the self attention and
cross attention mechanisms in the AttnLNP.

scope of modeling increases and the samples need not be Gaussian either.
However, this does complicate the log-likelihood as it is no longer necessarily
Gaussian and is integrated over z.

There are two methods of getting around this and estimating the loss
through another method. The first is the ELBO method which is the standard
method in literature, while the second utilizes a Monte-Carlo approximation of
the integral. These are known as Neural Processes Variational Inference (NPVI)
and Neural Processes Maximum Likelihood (NPML) respectively [Garnelo et al.,
2018b; Foong et al., 2020].

NPVI was the first method developed to address this issue. It borrows
heavily from principles utilized by Variational Autoencoders known as amortized
variational inference [K. and W., 2013]. The main idea is to utilize sampling from
the posterior to reduce the variance of samples. It is intractable to estimate the
latent variable from both the context and target sets as it involves a complicated



Bayesian estimate across z. Instead, we replace this by passing both the
context and target sets through the model. Then, using Jensen’s inequality to
find an evidence-based lower bound (ELBO) on our probability [Garnelo et al.,
2018b; Kim et al., 2019]. This is found to be:

log p(yt|xt; C) ≥ Ez∼p(z|D)[log p(yt|xt; z) − KL(p(z|D)p(z|C))] (4.10)

Here, D is the input set of both the context and target. Since the z is
Gaussian for both D and C, we can calculate the Kullback-Liebler divergence
(KL divergence) between them. Thus, we can now try to minimize this quantity.
This can be shown to reduce to minimizing the same previous loss while
subtracting the KL loss term
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from the loss. Thus, NPVI ensures that we can generate coherent samples
while training the model on just a single sample. This makes it efficient in terms
of computation time and resources. This also causes the training of the network
to be different from the testing of the network, as the model has access to both
context and target at train time but not at test time [Garnelo et al., 2018b; Foong
et al., 2020].

However, NPVI has its disadvantages. It focuses on creating the best latent
distribution. Also, the encoder has the dual task of creating a posterior
distribution, as well as encoding the data. This could lead to detrimental effects
during the training of the model. Thus, there are NPML methods that are usually
found to have better performance but are more expensive in time and
resources.

NPML utilizes a simple Monte Carlo approximation on the intractable loss.

log p(yt|xt;
C) = log

1
L

XL i=1

p(zt|C)p(y|x,
z)

!

(4.11)

This tells us that we can take multiple samples of our data and try to maximize
the average loss of each of the samples. However, this is not an unbiased
estimate. Instead, there is a negative bias and the probability here is a
conservative estimate of the true probability. Furthermore, it was found that the
number of samples has to be on the order of 20 to achieve a good performance
[Foong et al., 2020; Dubois et al., 2020].

In practice, it is found that NPML performs better than NPVI, but requires



more computational time and resources [Foong et al., 2020; Dubois et al.,
2020]. For a large dataset like the ones we would expect from the LSST, we
would recommend the use of the NPVI method to utilize computational
resources better and thus only present results utilizing NPVI in this thesis.

At this point, the Neural Processes module sounds very similar to a
Variational Autoencoder [K. and W., 2013]. Indeed, Latent Neural Processes
utilize concepts of Variational Autoencoders heavily. However, an important
difference is that Varia tional Autoencoders generate samples from learning
from a given input. This means that there are no input and output points in a
VAE. Neural Processes learn from input and output points and generate
representations at the queried target input points [Garnelo et al., 2018b]. This is
more helpful for the task we wish to accom plish with Neural Processes, which
is to interpolate quasar light curves. We see a comparison of VAEs and Neural
Processes, along with another model for generating samples from data known
as a Neural Statistician in Figure 4.3.
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Figure 4.3: The main difference between NPs and VAEs is the use of the
context points to inform the latent representation in Neural Process models.
Figure from Garnelo et al. [2018b].

Following the literature, we will drop the term latent from the description of
our model and refer to it as an ANP (Attentive Neural Process) model.

4.1.4 Parameter Estimation

Finally, we would like to see how well the modeling of our light curves can help
in recovering physical parameters. Specifically of interest to us is the ability of
the model to capture the underlying convolutional kernel of the transfer function.
Estimating this kernel from the data would allow for probing the structure of the
quasar directly from variations in the light curve without the need to decouple
continuum contribution to quasar lines and their reverberations.



In order to do this, we propose two methods. The first is similar to the
Baysian Attentive Neural Processes for parameter estimation proposed by Park
et al. [2021]. We add an extra MLP into the model that can encode the learned
information in the deterministic and latent samples to provide estimates of the
transfer function. We do not utilize the LSTM layer as we aim for faster models
and the LSTM did not add significant improvements in our case. We also
proceed using a Bayesian approach of generating a mean and standard
deviation and maximizing the likelihood of the target transfer function drawn
from this distribution. Thus, we modify the loss term by adding an additional loss
from the parameters

Lossparam =
1
NX

N i=0

log (p(param|z, R; C)) (4.12)

Where the parameter is reconstructed from the latent space sample z and the
attention-weighted representation R which are both conditioned on the context
set [Park et al., 2021].
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Figure 4.4: The Neural Processes model with the addition of a parametric MLP.
Figure modified from Park et al. [2021]. We utilize this MLP both in tandem with
the model during training or only after being trained.



We include a hyperparameter βparam as well to control the parametric loss’s
effect on the training of the model. We typically set βparam as 0.01 as this does
not impede the training of the model. This model can be seen in Figure 4.4.

The second method is to examine the trained model for hints of correlation
with parameters. This was done by Tachibana et al. [2020], with the
autoencoder network. Thus, instead of adding the MLP during training time, we
examine the hidden representation of the light curve directly instead. We
average the attention generated representation across the curve, utilize an
MLP, and train it to generate the parameter or transfer function of choice with
the same loss metric as described above.

4.2 Self Organizing Maps

We have discussed Neural Processes and the modifications that we have
added to them to upgrade from Conditional Neural Processes to Attentive
Latent Neural
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Processes. However, it would be impractical to train a large model on the
plethora of data that we have coming from the LSST. Instead, we would like to
partition our dataset before training with the ANP. This partitioning will provide a
two-fold advantage to the modeling process.

The first advantage is that the dataset will be smaller. Thus, we can train
many models in parallel that will all be examining smaller subsets of the model.
This will speed up the training process. However, a good data-driven model will
be able to generate balanced datasets. Through careful clustering of light
curves, the model can generate different insights on different clusters.

We utilize Self Organizing Maps (SOMs). SOMs can quickly learn patterns of
high-dimensional data and provide clustering representations. Furthermore,
their ability to process light curve observations as features allows new data
points to be added easily without complicating the clustering algorithm
[Kohonen, 1990].

A typical SOM is two-dimensional and consists of a grid of nodes. Each of
the initialized nodes is a mapping from a weight vector to a position in the grid.
We will use a 1-dimensional index for the weights for simplicity here. We will



also represent the weight vector with w. When the SOM is training, it updates
based on one input at a time. It identifies the node that is closest to the chosen
input point (based on the Euclidean distance between the input and the weight)
and this is deemed the winner node or the Best Matching Unit (BMU).

dmin = argmin||x − wi|| (4.13)

where x is the input point. The BMUs weight is now updated based on the

formula. wi+1 = wi + η(t)h(i)(x − wi) (4.14)

Here, h is the neighborhood function that controls how much each node affects
each of its neighbors. We choose a Gaussian neighborhood function for
simplicity. This Gaussian is centered on the winning node and is parameterized
by a standard deviation σ. We also have η which is the learning rate of the
model. σ and η are both hyperparameters that can be tuned for different
performances for the model. We decrease both parameters as the training
proceeds with a simple decay function:

xi+1 =x 1 +
i

(N/2)

(4.15)

Where i is the current iteration and N is the maximum number of epochs of the
model. The number of epochs and the grid size of the SOM are also important
hyperparameters for the SOM training [Kohonen, 1990].
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When the SOM has been fully trained, each of the input vectors are then
assigned to the BMU’s group. While there are many methods to interpret the
clusters from this configuration, two are of the most interest for an unsupervised
clustering. The first is to interpret each nodal group as a cluster. The second is
to group together nodes in order to identify clusters. The easiest way to do so
without imposing order on the data is to view the weights associated with each
node. Each node is paired with the neighboring node that has the minimum
euclidean distance from it. This is repeated for every node that has an even
lower euclidean distance from the previous distance until the pattern ends at
one node [Hamel and Brown, 2012]. Thus, the gradients are identified among
the nodes based on those that are closer to each other and can define a
grouping of nodes, which we will call ’gradient based clustering’. This method
has the capability of identifying clusters in the dataset without the number of



nodes setting the number of clusters, while still allowing the nodes to learn
subtle differences while training.

Thus, our SOM can learn topological differences in the light curves and
assign each light curve to a representation that matches it best. We provide
each light curve as a data point to the SOM.

4.3 Complete Model Setup

In this section, we describe how the entire model setup works. When dealing
with real light curves, we first apply a cleaning procedure to deal with outliers.
From the recommendation of Sánchez-Sáez et al. [2021], we first remove all
points that have an error of more than a magnitude. Then, following the
recommendation of Graham et al. [2015]., we apply a three-point median filter
on the light curve. Then, we perform a 5th-degree polynomial fit to the curve
and remove all points that significantly deviate from the fit. Initially, we start with
0.25 mag deviation. If too many points are removed, we increase the threshold
until no more than 10% of the points are removed. Finally, our light curves are
ready to go through the pipeline. Our process is very similar to the previous
pipeline for the CNPs [Kovačević et al., 2023; Čvorović Hajdinjak, 2024].

The very first step is to cluster our light curves. We pad our light curves to
the length of the longest light curve. Then, we scale our light curves. From ex
perimentation, we have found that the best result is to utilize a min-max scalar
in the range of [-2,2] to achieve the best results. These scaled light curves are
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passed through the SOM and assigned clusters through either the BMU node or
the gradient-based grouped node clusters. We include many metrics to
understand the effectiveness of the clusters. These include Quantization Error
and Topographic Error in addition to standard unsupervised clustering metrics
such as Silhouette Score, Calinski-Harabasz Index, and Davies-Bouldin Index.
The Quantization error captures how well each cluster representation captures
the inter-cluster light curves. The lower the QE, the better the clusters represent
the data [Kohonen, 1990].

QE =
1
NX

N i=1

(xi − wBMUi) (4.16)



The Topographic Error captures the topological preservation of the data by
determining the average distance between every curve’s BMU and the second
BMU. The lower the topographic error, the more distinct each node is Bauer et
al. [1999]; K. [1996].

T E =
1
NX

N i=1
(wBMUi− wSBMUi) (4.17)

The final three scores are standard metrics in unsupervised clustering. The
Silhouette score determines the separation of different clusters by measuring
the distance of points from the center of the cluster to the center of the nearest
cluster. A higher score indicates more separated clusters. The Davies-Bouldin
Index measures the similarity of the points to their cluster center as compared to
the nearest cluster. Similarly to the silhouette score, it is higher for more
well-defined clusters. Finally, the Calinski and Harabasz Index measures the
variance of the clusters as compared with the total variance of the dataset.

Through the interpretation of metrics, as well as hyperparametric tuning of
the SOM and choice of clustering mechanisms, one can determine the optimum
clustering for the dataset. Then, we utilize an ANP for each cluster. Our ANP is
built completely in PyTorch.

Once again, for the ANP we pad the light curves to the length of the longest
light curve. Then, we scale the light curves in the same way as before. This
scaling ensures that we capture variances in a scale-free manner, treating the
variations within each light curve as equal. Finally, we split our data into sets
used for training, validation, and training. We follow the standard
recommendation of around 80% of the data being training data, with 10% each
for validation and testing. We also augment our data by adding and subtracting
the measurement errors from each point. We have
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seen that this method has improved our model’s capability to model error, has
led to quicker convergence, and prevented overfitting (see Kovačević et al.
[2023] for a detailed discussion).

Now, we train our ANP on the training data. In every epoch of training, we
select a random number of points between 60-80% of the light curve as context
points and then 80-100% of the light curve as target points. We batch our
training set and utilize average statistics across the batch in training.



We also evaluate the performance of the models on the validation set. We
choose the model that performs best on our validation set to avoid overfitting to
the test set. We also include an early-stopping mechanism if the validation loss
no longer decreases.

Our training is optimized for the reconstruction loss as explained in the
Neural Processes section. However, we also evaluate and report metrics that
are more standard for regression in our package, namely the Mean Standard
Error and the Mean Absolute Error of the data.

MSE =
1
NX

N i=1

wi(yi − yˆi)2(4.18)

MAE =
1
NX

N i=1

|yi − yˆi| (4.19)

The MSE metric places more emphasis on outliers as it utilizes the square of
the error, while the MAE utilizes the absolute error so is less sensitive to
outliers. Our implementation of the MSE error also differs with the inclusion of a
weight that corresponds to the error of the observation. It is important to note
that these metrics do not influence the training of the model, however, they
provide a good idea of how well the model is working and training.

Finally, when the model is trained, we provide the model with the entire
dataset and produce modeled light curves from the train, validation, and test
sets. We evaluate metrics based on the entire curve and also produce short
cadence repre sentations using the model to interpolate the light curve. We can
also utilize the model to provide estimations of the parameters.

We also have a range of hyperparameters typical of machine learning
models. We typically utilize an MLP that first encodes our observed magnitudes
and times into a 128-dimensional representation. Then, we pass it through 3
layers of linear encodings spaced by activation functions. We find that the
Leaky ReLu activation
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function performs best, as regular ReLu encoding produces too many zeros for
our encoding. We also utilize a latent space representation of equal size as our
encoding size (i.e 128 dimensions) and then pass our representation
concatenated with our target points through a 4-layer MLP decoder that
produces a characteristic mean and standard deviation of a normal distribution.



We also utilize an Adam optimizer with a learning rate of 10−3[Kingma and Ba,
2014]. We use a batch size of 8.

The standard deviation of the distribution (both to generate a latent
distribution and the final prediction) is modified to remain positive. The model
outputs a logarithmic standard deviation. We perform both a softmax and sum
function to add together the logarithmic outputs and generate the standard
deviation of the distributions. Then, we add a small constant of 0.01 to ensure
that the standard deviation is non-zero. (Refer to Dubois et al. [2020] for a more
detailed explanation)

4.4 Transformers

As a special application of time-series analysis, we also provide a discussion of
the uses of attentive mechanisms in extracting hidden features from quasar light
curves. We utilize a Gated Transformer Network to detect hidden close binary
signals in the dataset [Liu et al., 2021].

A traditional transformer extends from the Multi-Headed Attention model to
im plement an encoder-decoder model to process sequential data. The encoder
consists of stacked attention layers that contain a multi-headed self-attention
mechanism and a simple feedforward neural network. The decoder contains
similar stacked lay ers with the addition of a cross-attention layer that calculates
previous inputs. It also utilizes positional encoding to allow for sequential
knowledge of the data and masking to prevent the transformer from ’cheating’
and predicting the latter part of the sequence [Vaswani et al., 2017].

The gated transformer network (GTN) makes a few modifications to the
trans former mechanism as seen in Figure 4.5. It adds a non-linear embedding
before the stacked layers. Next, it splits the encoder into two towers to analyze
multivariate time series data. The first tower utilizes positional encoding and
attentive mech anisms to learn step-wise correlations across the different
channels that comprise the multivariate time series. The second tower looks at
each ‘channel’ (one variable of the multi-variate time series) and utilizes
attention to learn features across the channel [Liu et al., 2021].
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Figure
4.5: Model Architecture of a Gated Transformer Network. Figure from Liu et al.
[2021].

Finally is the namesake gating mechanism. The gating mechanism utilizes
non linear activation transforms of each of the tower outputs to determine how
much weight to assign to each of the outputs. This improves the model instead
of just concatenating both the outputs together [Liu et al., 2021].

We utilize the GTN as a classifier to determine which light curves contain em
bedded close binary signals. We work both with simple simulated light curves
and the LSST AGN DC light curves with artificially injected close binary signals.
We choose the hyperparameters as a batch size of 16, Adam optimizer, and a
learning rate of 10−4. Furthermore, we utilize an 8-headed model, with an
encoding size of 64 and a hidden dimension of 1024 on the feed-forward
network. We also utilize a
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relu activation function and a dropout layer of 0.2 on our feedforward network. 39



Chapter 5

Results and Discussion

5.1 Upgrades to the model: Tests on Fiducial
Dataset

5.1.1 Old vs New: The improvements with Attention and Latent
Space

To test the upgrades to the model, we utilize 100 simulated DRW light curves
and our ANP model. When trained on the degraded light curves, we find that
the upgrades have indeed improved the performance of the model. From Figure
5.1, it can be seen that the models train very similarly on the light curves.
Indeed, it is found that in practice, the neural process models are very powerful
and able to model training data to very high precision. It should also be noted
that this is a highly challenging test for the models, with most of the data
obscured.

The improvements can be seen in Figure 5.2, where the upgraded AttnLNP
model can perform better on the validation data better than the CNP. Though
the difference might seem small, it should be noted that this is in log space, and
the metric measures the average performance of the model throughout the
entire light curve. Thus, we can see the addition of attention and a latent space
has improved the performance of the model. Furthermore, the addition of a
latent space allows for the possibility of generating multiple samples of the light
curve predictions.

In Figure 5.3, we plot a test light curve (i.e one never seen by the model
during training) to show the power of having a model that can produce different
samples. With the addition of multiple samples, the model performs better and
the additional
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Figure 5.1: Training Curves of the (old) CNP model and the (upgraded) AttnLNP
models on fiducial DRW light curves. The CNP model loss is plotted in blue,
while the AttnLNP model loss is plotted in orange.

samples can be used for further analysis to analyze better the light curves for
periodic signals or reverberation mapping.

5.1.2 Recovery of hidden data

In this section, we look at the performance of the upgraded model on a larger
dataset and the ability of the model to recover information that was hidden from
it. We utilize 1000 simulated DRWs. Due to the large sample size, we utilize a
larger ANP network with 256 nodes in the encoding for both the deterministic
and latent paths.

With a larger sample size and training set, the model is able to perform
better. The mean negative log probable loss is now 0.58 on the test data with
the light curve data with gaps.

When evaluated on the entire data, the model can capture some light curves
better than others. We evaluate this performance by calculating the mean
negative
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Figure 5.2: Validation Curves of the (old) CNP model and the (upgraded)
AttnLNP models on fiducial DRW light curves. Layout same as Figure 5.1

log probable loss of the modeled light curve with the real light curve. A higher
value indicated a better match. In Figure 5.4, we plot the 4 best modelled light
curves. The model can fit the data well and most of the light curve falls within
the confidence interval.

However, there are cases when the model fails to predict the entire light
curve. In Figure 5.5, we plot the 4 worst modeled curves. The model fits the
data with the gaps well but fails to understand the underlying structure in the
areas that it hasn’t seen. However, even in these cases, the model still doesn’t
make extraneous predictions and the predictions are still reasonable without
access to the full light curve.

The average loss for the curves is 0.37. Thus, most of them fit well to the
data. In Figure 5.6, we plot a light curve that has a loss close to the average
value. We see that the model is successful in capturing the entire light curve
within the confidence interval of the measurement. Thus, we can conclude that



the model is successful at
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(a) CNP modeled Fiducial DRW Light
Curve

(b) AttnLNP modeled Fiducial DRW Light
Curve with 10 samples of the light curve

Figure 5.3: Representative test Light Curves modeled under the old CNP model
(a) and the new AttnLNP model(b). Black dots indicate observations with error
bars. The mean modeled light curve is shown with the blue solid line with the
shaded confidence intervals of 1,2 and 3σ

reconstructing light curves even from limited context points. In more realistic
data with larger amounts of light curves, as well as more observations in the
gaps, the model should perform very well in reconstructing observations.

5.2 Recovery of Parameters from Simulated Light
Curves

Next, we use the simulated light curves with transfer functions and test the
model’s effectiveness in the recovery of parameters. Specifically, we would like
to recover the transfer function.

5.2.1 Reconstruction of Gaussian Transfer Function

For the Gaussian transfer function light curves, besides the transfer function,
the varied parameters are the DRW τ and SF∞ and the redshift. When training
the model, we include the extra MLP to predict the transfer functions, as well as
other parameters.



The reconstructed transfer functions for the test light curves can be seen in
Appendix A. We include the mean predicted transfer function, along with the
actual mean transfer function for each band in Figure 5.7. It can be seen that
the model

43
CHAPTER 5. RESULTS AND DISCUSSION

(a) (b)

(c) (d)

Figure 5.4: Examples where the model can replicate a fiducial curve well
despite only training on data with large gaps. Note the different scales of the
y-axis. The full light curve is plotted with blue dots, while the degraded
observations that the model sees are marked with orange dots. The modelled
prediction of 10 samples are plotted with blue lines with a 2σ confidence interval
shaded in blue.

performs exceedingly well as the size of the time lags increases. We include the
negative log probable loss and see that it decreases (i.e performs better) with
an ascent in the bands. The u-band transfer functions are particularly difficult to
model as the lags peak over a small range and vary more over a smaller region
than the other bands. However, the model is still able to recover the overall



shape and peak for each of the bands.
We also can see the recovery of parameters in Figures 5.8 - 5.12. From the

distribution of mean recovered parameters compared with the true underlying
pa rameters, we see that in all bands, the predicted parameters are tightly
centered around the center of the distribution. Furthermore, in a few cases (for
example,
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(a) (b)

(c) (d)

Figure 5.5: Examples where the model encounters problems in replicating the
fidu cial curve. Notation same as Fig 5.4



Figure 5.6: Example close to the average goodness of fit of the predicted curve
to the actual light curve. Notation same as Fig 5.4
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(a) Recovery of the mean
transfer function from u
band light curves

(b) Recovery of the mean
transfer function from g
band light curves

(c) Recovery of the mean
transfer function from r
band light curves

(d) Recovery of the mean transfer function
from i-band light curves

(e) Recovery of the mean transfer function
from z-band light curves

Figure 5.7: Recovery of mean transfer functions from light curves of different
bands simulated with a Gaussian transfer function. The real light curve is plotted



in orange, while the modelled transfer function is plotted in blue with a 2σ
confidence interval shaded in blue.

Figure 5.8a and Figure 5.9b), the distribution can model peaks in the parametric
distribution. This matches the findings of Park et al. [2021], where the
parameters associated with the black holes were recovered tightly centered
around the original distribution.

Thus, we can conclude from this particular transfer function that the model is
able to parse out the transfer function well when there is a high degree of
similarity among transfer functions. Our SOM stratifies light curves by
topographical similari ties, which could include similarities from transfer
functions. Thus, the stratification of light curves could group light curves with
similar transfer functions in real large datasets like the LSST catalog, allowing
for easy detection of transfer functions.
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(a) Recovery of the DRW τ parameter
(b) Recovery of the DRW

SF∞ parameter (c) Recovery of the redshift

Figure 5.8: Recovery of parameters from the u band light curves simulated with
a Gaussian transfer function. The actual distribution of parameters is plotted in
orange, while the distribution of predicted mean for each light curve is plotted in
blue.



(a) Recovery of the DRW τ parameter.
(b) Recovery of the DRW

SF∞ parameter (c) Recovery of the redshift

Figure 5.9: Recovery of parameters from the g band light curves simulated with
a gaussian transfer function. Notation same as Figure 5.8

(a) Recovery of the DRW τ parameter
(b) Recovery of the DRW

SF∞ parameter (c) Recovery of the redshift

Figure 5.10: Recovery of parameters from the r band light curves simulated with
a gaussian transfer function. Notation same as Figure 5.8
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(a) Recovery of the DRW τ parameter
(b) Recovery of the DRW

SF∞ parameter (c) Recovery of the redshift

Figure 5.11: Recovery of parameters from the i band light curves simulated with
a gaussian transfer function. Notation same as Figure 5.8

(a) Recovery of the DRW τ parameter
(b) Recovery of the DRW

SF∞ parameter (c) Recovery of the redshift

Figure 5.12: Recovery of parameters from the z band light curves simulated
with a gaussian transfer function. Notation same as Figure 5.8

5.2.2 Reconstruction of the Cackett Transfer Function

With the Cackett transfer function, we can recover three additional parameters
related to the black hole. These are the black hole mass, the Eddington
luminosity ratio, and the inclination of the black hole to the observer. These
parameters also induce variability in the transfer functions, making this an
additional challenge for the model. We train the model similar to the previous
section with these additional parameters.

The mean transfer functions for each band can be seen in Figure 5.13 and
the reconstructed transfer function for each curve is seen in Appendix B. The
model can recover the transfer function better for lower bands in this case. This
is because the lower bands have a lower variation of time lags. The higher
bands also extend into much higher time lag values, smearing out the
convoluted light curve more, causing recovery of parameters from light curves
with gaps to be tougher and a longer baseline sampling needed to identify
variability trends. However, the model
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(a) Recovery of the mean
transfer function from u
band light curves

(b) Recovery of the mean
transfer function from g
band light curves

(c) Recovery of the mean
transfer function from r
band light curves

(d) Recovery of the mean transfer function
from i-band light curves

(e) Recovery of the mean transfer function
from z-band light curves

Figure 5.13: Recovery of mean transfer functions from light curves of different
bands simulated with a Cackett (Thin-Disk approximation) transfer function.
Notation same as Fig 5.7

is still able to capture the inflection point for even the most poorly fit transfer
functions well, thus capturing the peak of the transfer function very well. In
Figures 5.14 - 5.18, the parameter recovery distribution for the Cackett trans fer
function light curves is shown. Once again, the predicted distribution tends to be
centered around the peak of the actual distribution. However, distinct peaks can
still be recovered as in Figures 5.16d and 5.15f where the predicted distribution
has multiple peaks.

With this, we have provided a means of estimating a transfer function and
other black hole parameters from limited data points. We can train different
models on real transfer functions recovered through photometric reverberation
mapping and produce different estimates for transfer functions for light curves in
the LSST.
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(a) Recovery of the DRW τ parameter

(b) Recovery of the DRW

SF∞ parameter
(c) Recovery of
the redshift

(f) Recovery of the inclina

(d) Recovery of the (log)

Black Hole Mass (in M⊙)
(e) Recovery of the Edding
ton luminosity ratio
tion of the black hole (in ra
dians)

Figure 5.14: Recovery of parameters from the u band light curves simulated
with the Cackett (Thin Disk approx) transfer function. Notation same as Figure
5.8

5.2.3 Recovery of the Parameters after training



We have demonstrated that our model can recover parameters with an MLP
added during training. However, we can also investigate if the model is capable
of learning these parameters without interference during training. To achieve
this, we simply detach the MLP that predicts the parameters and allow the
model to train with a focus on solely reconstructing the light curve. Once the
model has been trained, we utilize a method similar to Tachibana et al. [2020].
We obtain hidden representations of the curve during test time by averaging the
representation obtained through cross attention and one latent space sample
across all target points. Then, we pass this hidden representation through an
MLP with one hidden layer that outputs either a single parameter or a function
(which we compare to the transfer function).

Unlike Tachibana et al. [2020], we utilize the Bayesian nature of NPs to train
this MLP. We output a mean and standard deviation of the parameter and
optimize the model to minimize the negative log probable loss of this distribution
with respect to the parameter of interest. For this task, we utilize 100 simulated
u-band light curves with the Cackett Transfer function and try to reconstruct
both the transfer
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(a) Recovery of the DRW τ parameter



(b) Recovery of the DRW

SF∞ parameter
(c) Recovery of
the redshift

(f) Recovery of the inclina

(d) Recovery of the (log)

Black Hole Mass (in M⊙)
(e) Recovery of the Edding
ton luminosity ratio
tion of the black hole (in ra
dians)

Figure 5.15: Recovery of parameters from the g band light curves simulated
with the Cackett (Thin Disk approx) transfer function. Notation same as Figure
5.8

function and the aforementioned parameters. We ran the MLP for 2000 epochs
with an early stopping patience criteria of 200 epochs. We use a hidden layer
halfway between the size of the transfer function and the latent space size, thus
with 314 nodes. We choose a learning rate of 10−5.

In Figure 5.19, we see that the model trains extremely quickly and can
achieve a very low loss on the transfer function. Surprisingly, the model
performs better on validation data than training data. This is perhaps because of
the greater diversity of the training data as well as the fact that the model can
capture the trends very well.

The model is able to perform well on test data as well and with a mean
negative logprobloss of -1.09. The great performance of the model in recovering
the transfer function suggests that the transfer function is indeed hidden within
the the model’s representation of the light curve. We plot the recovered transfer
functions from the training curves in the Appendix C.

We also recover other physical parameters. For parameters that have a
higher range like the mass and tau, we utilize a learning rate of 10−4, while we
utilize 10−5
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(a) Recovery of the DRW τ parameter

(b) Recovery of the DRW

SF∞ parameter
(c) Recovery of

the redshift
(f) Recovery of the inclina

(d) Recovery of the (log)

Black Hole Mass (in M⊙)
(e) Recovery of the Edding
ton luminosity ratio
tion of the black hole (in ra
dians)

Figure 5.16: Recovery of parameters from the r band light curves simulated with
the Cackett (Thin Disk approx) transfer function. Notation same as Figure 5.8

for other parameters like inclination, SF∞, and redshift that lie in a smaller range
of values. For the eddington luminosity ratio, we find that the learning rate does



not make a difference. We also run the model for 1000 epochs with a early
stopping patience of 100.

We plot the parametric distribution of parameters in the Appendix C and find
we recover the same behavior of recovering parameters tightly centered around
the actual distribution’s center.

Thus, we find an alternative method for recovering parameters and the
transfer function without biasing the training of the Neural Processes. The
model’s success in recovering these parameters from the hidden state lends
credence to the assumption that the model can learn driving factors of
variability. This method also allows for different models of transfer functions to
be tested on real data after reconstruction. Furthermore, the parameters can be
recovered much more flexibly without altering the structure and loss of the NP
with this method.
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(a) Recovery of the DRW τ parameter (b) Recovery of the DRW

SF∞ parameter
(c) Recovery of
the redshift
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Figure 5.17: Recovery of parameters from the i band light curves simulated with
the Cackett (Thin Disk approx) transfer function. Notation same as Figure 5.8

5.3 LSST AGN DC

In this section, we present our results on the LSST AGN Data Challenge.

5.3.1 Clustering with SOM

In Kovačević et al. [2023], the SOM was tested on the LSST AGN DC. We
present an upgraded version of the SOM from the previous study and results
from different clustering styles.

Utilizing cleaned u-band curves, we obtain different clustering configurations
for different hyperparameters of the SOM. We use u-band curves as the
variability is thought to be closer to the driving variability of the quasar (Refer
back to the convolution of different transfer functions with the light curve).

Running a 6 × 6 SOM for 10,000 epochs, we found that the hyperparameters
σ = 1.5 and a learning rate of 0.05 produced the best combination of
quantization and topographic errors. In Figure 5.20, we can see that the
learning rates of 0.05 and 0.1 both produce similar Quantization errors but 0.05
has a lower topographic error.
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dians)

Figure 5.18: Recovery of parameters from the z band light curves simulated
with the Cackett (Thin Disk approx) transfer function. Notation same as Figure
5.8



Figure 5.19: The training and validation curves for the MLP recovering the
transfer function from a hidden representation of simulated cackett light curves
in the u band. The training loss is plotted in blue, while the validation loss is
plotted in orange.
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(a) Quantization Error (b) Topographic Error

Figure 5.20: Learning Curves for LSST AGN DC light curves for different
learning rates at constant σ = 1.5. The learning rate is varied between 0.01,
0.05, 0.1 and 0.5 and the error is plotted with lines in blue, orange, green and
red, respectively.



(a) Quantization Error (b) Topographic Error

Figure 5.21: Learning Curves for LSST AGN DC light curves for different sigma
values but constant learning rate of 0.01. The sigma is varied between 0.5, 1.0,
1.5 and 2.0 and the error is plotted with lines in blue, orange, green and red,
respectively.

In Figure 5.21, we see that 1.5, 1.0, and 0.5 produce similar values quantization
errors for when fully trained, but 1.5 also produces a much lower topographic

error. Now, we choose the size of the SOM grid. The accepted convention is to
set the grid size equivalent to five times the square root of the dimensionality of
the data. We found this to produce too many clusters with too few curves for a
dataset like the LSST AGN Data Challenge, so we set our default to simply the

square root of the dimensionality. However, we would also like to empirically
select the optimum grid size. For simplicity, we require the grid to be square and

test various square
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Figure 5.22: Quantization and Topographic Errors for different SOM grid sizes
for the LSST AGN DC. The final quantization error for different grid sizes is
plotted in blue, while the corresponding topographic error is plotted in orange.

grid lengths to find the one with the best quantization error at the end of 10,000
epochs with the aforementioned hyperparameters for our dataset. In Figure
5.22, we see that the quantization error decreases for larger grid sizes, but the
topographic error continues to increase for larger grid sizes. A bigger
topographic error indicates more random clustering, so it is advantageous to
optimize both the quantization and topographic error. Thus, we choose a SOM
grid size of 12 × 12.

When we cluster with a 12×12 SOM, we produce 144 distinct clusters.
However, we end up with too many separate clusters. The maximum number of
light curves within a cluster is only 25. Thus, the SOM has found intricate
differences but has stratified too much. Thus, we use gradient cluster mapping
to create meaningful clusters from the SOM nodes. In Figure 5.23, we have
plotted the distance map of the SOM. The darker the node, the further away the
node is from its neigh bors. Creating gradients on the distance map, we can
apply our gradient clustering algorithm to group together nodes.
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Figure 5.23: The Distance Map for a 12 × 12 SOM on the LSST AGN DC light
curves. The darker the grid, the further away the SOM node from the
neighboring nodes.

In Figure 5.24, we see the gradients. Each cluster center is chosen at the
center of each of the gradients. Every node that lies along one of the lines
originating from the cluster centers is grouped into that cluster. Thus, we reduce
the number of clusters from 144 to a much more manageable 11 clusters. We
can see the distribution of light curves in each cluster in Figure 5.25.

We also plot the light curves that make up each cluster in Figure 5.26. It
should be noted that the averaged light curves are created through barymetric
time warping, which accounts for the fact that each of the light curves could be
shifted in time [Petitjean et al., 2011, 2014; Forestier et al., 2017]. Thus, we can
detect the presence of characteristic flares and dips within each of the clusters
through the average light curve.

Thus, we demonstrate that the SOM can effectively cluster on large
datasets, while providing a range of hyperparameters and metrics that can be
used to adapt to the particular dataset of interest. Now, similar to Kovačević et
al. [2023], we focus on a single cluster and model the light curves within it.
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Figure 5.24: The Starburst gradient clusters from a 12×12 SOM on the LSST
AGN DC light curves. Nodes that are grouped together lie along black lines that
lead to the same central node. The distance map is shaded, with darker nodes
being closer to their neighbours.

5.3.2 Analysis of One Cluster

For analysis, we choose Cluster 7 as it is the largest cluster. We run the model
for 2000 epochs. However, we allow the model to stop early if the validation
data does not improve for 500 epochs.

Our results can be seen in the appendix in Figure D.1. We see that in most
cases, the model can stay within the observed light curve, providing a good



reconstruction of the light curve. The removal of outliers as compared to
Kovačević et al. [2023] has changed the modeling. While the loss associated
with the light curves is slightly larger, the absence of large outliers allows the
models to learn finer variations in the light curve and produce reconstructions
with more variability. This cleaning
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Figure 5.25: The distribution of light curves from the LSST AGN DC Clusters

of outliers is important as it impacts the scaling of the light curves between the
maximum and minimum of the light curve.

In Figure 5.27, we see the training and validation curves. We see that the
model is able to learn the best performance on the validation loss very quickly



and then starts overfitting to the test data. Thus, the model stops early at epoch
675 (though we plot the loss until epoch 1175.

We also average the mean representation of the light curves within the
cluster and feed it through a decoder to predict the average behavior of the
cluster. We plot this average behavior in Figure 5.28. We see that there are two
characteristic bumps within the light curve, along with a generally decreasing
trend. Through this

59
CHAPTER 5. RESULTS AND DISCUSSION



Figure 5.26: The distribution of light curve within each cluster from the LSST
AGN DC. The blue curve is the time-warped average while each of the grey
curves is an actual light curve
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Figure 5.27: The training (plotted in blue) and validation losses (plotted in
orange) while training on one cluster from the LSST AGN DC.

method, we can analyze the insights that the model discovers within each
cluster.

5.3.3 Multi-Band Modelling

With data from 5 different bands available within the LSST AGN DC, we test the
possibility of modeling across different bands. We choose cluster 5 as it
contains fewer bands, allowing for easier modeling of 5 separate bands
together. We model this cluster in the u-band twice, once when trained on only
the u-band data and again when trained on all of the bands in parallel. We use
the same model conditions as the last section.

In Figure 5.29, we see that training on multiple bands performs much better
with the loss. The multi-band training and validation curves both perform far
better on multi-band data than single-band data.

In Figure 5.30, we see the test light curve reconstructions obtained from
training on just the u band data. In Figure 5.31, we see the reconstructions from



all the
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Figure 5.28: The decoded average representation of the light curves within the
cho sen LSST AGN DC cluster is plotted with a blue line (Cluster 7). The
different shaded bands are the confidence intervals (1,2 and 3 σ respecively) of
the represen tation

light curves in Cluster 5 across bands. We see that the multi-band light curves
can make better inferences between data points with more variability. Thus, the
model is able to learn across different bands to model single-band data.

In Figure 5.32, we identify two light curves that were used in training across
both models and compare the reconstruction in both cases. We find that multi
band data can induce more variability into the curve again as seen in light curve
1418215. However, it can cause the reconstruction to be less smooth as seen
with the 146636. Furthermore, it is important to note that the multiband data
increases the uncertainty of the modelling.

Our model’s treatment of multi-band data sets it apart from other models. In
other works such as Fagin et al. [2024] and Park et al. [2021], all of the bands



are provided as features of the data to the model. This is advantageous as
simultaneous
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Figure 5.29: Training Curves for just u band as compared to multi-band
modelling. The training and validation curves are plotted in blue and orange
respectively for the model trained exclusively on u band light curves, while they
are plotted in green and red respectively for the model trained on light curves
from all bands.

modelling of the different bands can be achieved faster and the model can
parse out different correlations between bands. However, in our model, we
decouple the different bands and provide each band as a separate light curve.
This allows for flexible reconstruction of different bands and the ability to learn
subtle trends within each band without bias. Thus, each approach has its own
merits.

We include the modelled test light curves across bands in the appendix in
Figure D.2.



5.4 ZTF Light Curves

We repeat the same modelling performed above on one cluster of g-band ZTF
light curves. We utilize the g-band as it contains the median number of
observations
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(a) (b)

(c) (d)

Figure 5.30: Modelled light curves from Cluster 5 with training only on the u
band data. Notation same as Figure 5.3

across filters and the variability originates closer to the center of the AGN.

5.4.1 Clustering with SOM

From our sample, we evaluate the optimal hyperparameters of the SOM. The
choices of parameters can be seen in Appendix E. We find a grid size of 7 with



a learning rate of 0.05 and σ of 0.75 produces the best balance between
quantization error and topographic error. Once again, we utilize gradient-based
clustering and obtain 7 clusters as seen in Figures 5.33 and 5.34 . We choose
Cluster 4 as it is the cluster with the largest number of light curves.
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(a) (b)

(c) (d)

Figure 5.31: Modelled light curves from Cluster 5 with training on all bands of
the LSST AGN DC. Notation same as Figure 5.3

5.4.2 Analysis of One Cluster

We utilize the same standard configuration for the model and run it for 2000
epochs on Cluster 4, with the option for early stopping. The model stops early at
epoch 879.

We can see the training curves of the model in Figure 5.35. We see once



again that the model achieves a rapid convergence towards the optimum
validation loss. The reconstructed test light curves are plotted in Figure 5.36.
We see that the model can recover densely populated areas of the light curve
very well. However, the model faces issues on less densely sampled regions of
the light curve. All in all, the model doesn’t stray from the trend of the light
curves and can capture most of each light curve within the confidence intervals
of the model.
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(a) (b)

(c) (d)

Figure 5.32: Comparison of light curves from Cluster 5 reconstructed with
training on only u-band data vs the same light curves trained on all band data.
The light curves that contain u in their name have been trained on multiband
data. Notation same as Figure 5.3

5.5 Transformers and Ticktocks

5.5.1 Performance on Simulated Curves



Before we utilize the transformer, there is a clear distinction between the light
curves that contain tick-tock signals as compared to the light curves that do not.
In Figure 5.37, we see that light curves containing tick-tock signals have a
non-zero mean magnitude, while the light curves without them have a near-zero
magnitude. This shows that the task should be an easy one for the transformer
and it should be able to learn that the mean is an important feature to
distinguish between light curves.

In Figure 5.38, it can be seen that the model performs very well on the
simulated curves. The model can achieve a very low loss on both the training
and validation
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Figure 5.33: The distribution of light curves in the clusters obtained from the
ZTF sample.



Figure 5.34: Visualization of light curves in the clusters obtained from the ZTF
sample. Notation same as Figure 5.26
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Figure 5.35: Training (in blue) and Validation (in orange) Curves for Cluster 4
from the ZTF light curves.



(a) (b) (c)

(d) (e) (f)

Figure 5.36: Reconstructed test light curves from Cluster 5 of the ZTF light
curve sample. Notation same as Figure 5.3

data. However, the training is characterized by many spikes and is overall less
smooth. This is a characteristic of many different transformer models tested on
the simulated data. Lower learning rates tend to cause the model to oscillate
less but prevent convergence. With a higher learning rate, the model tends to
choose one label and predict that label for every single data point. Thus, the
optimal solution is a learning rate of 10−4with the characteristic spikes.

In Figure 5.39, we see the confusion matrix of the model on test data. The
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Figure 5.37: The mean magnitudes of the light curves with tick-tocks (in red) vs
the light curves without tick-tocks (in green) for randomly simulated light curves.

Figure 5.38: Training (in blue) and Validation (in orange) Curves for the
transformer model on simulated light curves

model predicts the tick-tock signals with complete accuracy, It predicts only 1
tick tock signal as a non-tick-tock signal. Thus, the model can classify tick-tock
signals extremely well in the simulated data as expected.

5.5.2 Performance on LSST AGN Data Challenge

In Figure 5.40, we see that for the light curves in the LSST AGN Data
Challenge, there is no obvious bifurcation in the mean magnitude of the light
curves. This means that the task will be tougher for the model than the previous
case.

We plot the training and validation curves for the transformer model on the
LSST AGN Data Challenge light curves in Figure 5.41. We see similar
behaviour with multiple spikes in both the test and validation curves. This
indicates that the
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Figure
5.39: Confusion Matrix of the transformer model on simulated light curves. The
diagonal entries are correct predictions, while off-diagonal entries are wrong
predictions.

Figure 5.40: The mean magnitudes of the light curves with tick-tocks (in red) vs
the light curves without tick-tocks (in green) derived from the LSST AGN Data
Challenge
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Figure 5.41: Training (in blue) and Validation (in orange) Curves for LSST AGN
Data Challenge curves with injected tick-tock signals.

Figure 5.42: Confusion matrix for LSST AGN Data Challenge light curves with
injected tick-tock signals. Notation same as 5.39

gradient landscape for any problem of this type is riddled with different minima
that the model needs a sufficient learning rate to get out of. However, the model
can achieve good results again with a near-zero loss.

In Figure 5.42, the model performs very well again. Other than 2
non-tick-tock signals identified as tick-tock signals, the model can correctly
classify the test data. Finally, we allow the trained model to test on the sample
of the LSST AGN Data Challenge that was used before. It identified 78 light
curves as tick-tock signal candidates. Thus, these light curves can be further
followed up on for tick-tock signals.

Through this transformer experiment, we have shown that transformer



models can identify subtle trends within light curves, such as merging binary
black hole signals. Through training on larger datasets of simulated tick-tock
signals, as well as a more detailed simulation of the tick-tock signals with a
more careful selection
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of amplitude and variation in the signal, the model can be improved and used
on large catalogs of optical quasar light curves. Furthermore, similar
experiments on light curves obtained from a higher cadence survey such as the
ZTF allow the model to make more informed predictions of tick-tock signals.

Finally, we envision the light curves modeled by Neural Processes to
improve the effectiveness of the transformer model. Besides higher cadence
data with fewer gaps, attention has been shown to learn periodic signals within
stochastic processes (see Dubois et al. [2020] and the reconstruction of
periodic kernels). Thus, the SOM, the NP model, and the transformer model can
all be used in tandem to perform detailed analysis on light curves obtained from
large catalogs.
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